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Abstract

This study performs a systematic, empirical
comparison of widely used rate-limiting algorithms
Token Bucket, Leaky Bucket, Fixed Window,
Sliding Window (counter/log) in the context of
Cloud APIs and gateway deployments. We measure
their behavior under realistic workloads: steady-
state traffic, bursty arrivals, multi-tenant contention,
and synthetic DDoS-like floods. Key evaluation
axes are accuracy (how closely enforced rate
matches configured limits), latency overhead,
memory &  storage cost, fairness across
tenants/clients, and robustness under distributed
deployments (eventual vs. strong consistency). We
implement each algorithm in a modular testbed
using a programmable API gateway
(Envoy/NGINX as reference) and backing stores
(in-memory, Redis, and a distributed key-value
store). Experiments include single-node and geo-
distributed scenarios that emulate global APIs. We
also test consistency models: centralized counters
vs. approximate local counters with reconciliation.
Results will quantify trade-offs (e.g., sliding-
window accuracy vs. memory cost; token-bucket
burst allowance vs. peak load risk) and produce
practical guidelines for engineers choosing rate-
limiting  strategies in cloud-native systems.
Deliverables include: open-source implementations,
benchmark suite, reproducible experiments, and
design recommendations for cloud API operators.
This work aims to bridge the gap between
theoretical algorithmic properties and real-world
operational constraints found in modern cloud
platforms.

1.0 Introduction

Cloud-based application programming interfaces
(APIs) have become the backbone of modern
distributed systems, supporting critical services in
e-commerce, social media, finance, healthcare, and
large-scale enterprise applications. As API traffic
grows in volume, variability, and unpredictability,
rate limiting has emerged as an essential mechanism
to prevent resource exhaustion, safeguard service
availability, mitigate malicious or accidental
overload, and ensure fair access among millions of
clients. A wide variety of rate limiting
algorithmssuch as fixed window, sliding-window
counter and log methods, token bucket, and leaky
bucketare used across cloud platforms, API
gateways, and service meshes, each offering distinct
trade-offs in accuracy, burst handling, memory
usage, latency overhead, and ease of distributed
deployment. Despite their pervasive adoption in
systems like NGINX, Envoy, Cloudflare, and AWS
API Gateway, comprehensive empirical
comparisons of these algorithms under identical
conditions remain limited, particularly in multi-
tenant and geo-distributed environments where
consistency, fairness, and scalability challenges are
prominent. The increasing complexity of cloud-
native architectures, characterized by microservices,
high cardinality workloads, and edge deployments,
demands a clearer understanding of how different
rate limiting strategies behave under varying traffic
patterns, backend storage models, and enforcement
points. Therefore, a systematic comparative study is
necessary to evaluate the performance, correctness,
and operational cost of these algorithms, thereby
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guiding cloud architects, developers, and system
designers in selecting the most suitable rate limiting
approach for their specific application and workload
requirements.

2.0 Literature Review

Rate limiting is a fundamental mechanism for
protecting APIs and cloud services from abuse,
controlling  quality-of-service, and enforcing
fairness among clients. Modern cloud systems must
balance accuracy of enforcement, support for
bursts, memory/IO cost, latency overhead, and
scalability in geo-distributed environments. The
literature divides along two axes: (a) algorithmic
designs (token-bucket, leaky-bucket, fixed-window,
sliding-window variants), and (b) systems-level
strategies for making those algorithms scale
(centralized  counters,  distributed/approximate
counters, edge/local enforcement).

2. 2. Algorithmic families definitions and core
properties

o Fixed window: simplest approach; count
requests in discrete time windows. Low
memory but causes boundary effects
(burstiness near window borders).

« Sliding window (counter / log): keeps more
fine-grained time tracking (either via
counters with sub-windows or by storing
timestamps). More accurate smoothing of
requests but higher memory/10 (storing per-
request timestamps or many per-window
counters).

« Token bucket: allows tokens to accumulate
up to a bucket capacity (permits bursts),
implemented by decrementing tokens on
requests and refilling at a rate. Balances
burst allowance with long-term rate
enforcement.

e Leaky bucket: conceptual “queue” that
drains at a fixed rate similar smoothing
behavior, often implemented in proxies
(NGINX uses leaky-bucket style). Practical
guides and docs summarize pros/cons of
each approach. (Key takeaway): sliding-
window approaches are generally more
accurate (fewer false-positives/negatives) at
the cost of memory and storage ops;
token/leaky buckets give natural burst
handling but allow short-term overshoot.

2.3. Scalability & distributed enforcement

Single-node enforcement is simple, but cloud APIs
frequently require distributed enforcement for
availability and to avoid central bottlenecks.
Strategies in the literature and engineering blogs
include:

o Centralized counter (Redis / DB-backed):
simple to reason about, accurate, but
Redis/DB becomes a throughput/latency
bottleneck and single point of failure unless
sharded/clustered.

e Local (edge) enforcement + global
reconciliation: perform fast local checks
(reduce latency) and reconcile counts
asynchronously for eventual consistency.
This reduces load on central store but can
allow temporary inconsistencies or overage.
Envoy/Service-Mesh docs recommend local
rate limits to reduce load on global services.

e CRDT / eventually-consistent counters
and approximate data structures: CRDTs
(G-Counter/PN-Counter) and  sketches
(Count-Min) are proposed to build
decentralized counters that converge without
coordination; these allow scale but introduce
approximation and delayed consistency
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guarantees. The foundational CRDT theory
is Shapiro et al. (2011).

Engineering case studies (Cloudflare) document
designs to run accurate rate limiting at the edge for
millions of domains by combining efficient data
structures, sharding and smart aggregation to
balance accuracy and throughput.

2.4. Approximate counting & sketches (memory-
efficient scaling)

When per-client state is huge, approximate
counting techniques (Count-Min Sketch and
variants) provide memory-time trade-offs: they
reduce state at the cost of bounded probabilistic
error. Pitel’s Count-Min-Log (and Count-Min
family) are directly applicable to rate counting in
high-cardinality workloads (many clients or many
keys). These approaches are used in practice when
exact per-key counters are infeasible.

2.5. Fairness, metrics and evaluation
methodology

Quantifying fairness and client-level equity is
necessary in multi-tenant contexts. Jain’s Fairness
Index is widely used to measure distributional
fairness across tenants and has been used in
networking/resource allocation evaluations (original

formulation and modern adaptations). For
comparison studies, common metrics include
enforcement accuracy (violation rate), latency

overhead (p95/p99), throughput, memory/storage
usage, and fairness (Jain index). Statistical testing
(confidence intervals, paired comparisons) is
recommended to support claims.

3.0 Comparative Analysis of Rate Limiting
Algorithms in Cloud APIs

Algorithm ([Advantages |Disadvantages ||[Remarks
. “Boundar
. - YUseful  for
* Simple to||problem”: burst )
. . basic rate
implement |[at window||.. . . .
limiting in
. Low/||edges can .
. . .. |lpredictable
Fixed memory exceed limits
g traffic; not
Window |usage * Less accurate

» Efficient for]
low-traffic
APIs

for
workloads

irregular

e Poor fairness
under high load

ideal for|
cloud-scale
or  bursty
workloads.

Sliding
Window
Counter

. More
accurate than
fixed window
. Smooths
traffic across
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memory and
computationa
1 cost
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approximate
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* Higher storage
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and
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gateways.

Sliding
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timestamp)
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Ideal  for
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5.0 Industry Systems

In modern cloud platforms such as AWS, Google
Cloud, Azure, and API-driven SaaS infrastructures,
rate-limiting mechanisms are integral to ensuring
service reliability, fair resource allocation, and
protection against traffic surges. However,
implementing and maintaining these systems
involves significant operational costing influenced
by computational overhead, storage requirements,
distributed coordination, network latency, and
monitoring infrastructure. Simpler approaches like
fixed-window or token-bucket algorithms incur
minimal computational cost and are preferred in
high-throughput microservice architectures, where
efficiency directly translates to reduced server
utilization and lower billing. In contrast, advanced
modelssuch as sliding-window logs, distributed
Redis-based limiters, or machine-learning-driven
adaptive rate limitingintroduce higher resource
consumption due to their need for state replication,
timestamp management, and real-time analytics.
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Industry systems must also allocate budget for fault
tolerance, autoscaling, API gateway licensing (e.g.,
Kong, Apigee, AWS APl Gateway), and
observability tools that track rate-limit violations
and latency. As a result, operational costing
becomes a trade-off between performance accuracy,
scalability, and the economic constraints of cloud
deployment. Organizations increasingly balance
these factors by choosing hybrid
architecturescombining cost-efficient rate
enforcement with distributed cachingto maintain
both service quality and operational affordability.

6.0 Conclusion

Rate limiting has become a critical architectural
component in  modern cloud-based systems,
ensuring reliability, fairness, and security in API-
driven environments. This comparative study
demonstrates that no single algorithm universally
outperforms others; instead, effectiveness depends
on workload patterns, performance priorities, and
the scalability needs of the organization. Token
Bucket and Sliding Window Counter algorithms
offer an optimal balance of accuracy and
operational efficiency, making them highly suitable
for large-scale cloud deployments. More precise
mechanisms, such as Sliding Window Log, provide
superior accuracy but with higher computational
and storage costs, limiting their practicality in high-
traffic environments. Distributed approaches using
systems like Redis further enhance scalability and
fault tolerance, aligning well with multi-region
cloud architectures. Meanwhile, emerging adaptive
and Al-based rate-limiting solutions show promise
in  dynamically adjusting to unpredictable
workloads, though their deployment cost and
complexity remain concerns. Overall, cloud service
providers must choose rate-limiting strategies that
align with their traffic behavior, operational budget,
and latency constraints. Future innovations will

likely converge on hybrid, intelligent, and cost-
aware mechanisms that strengthen API resilience
while optimizing system resource consumption.
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