ISSN: 2455-6203

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 10 | Issue: 03 | Nov - 2025
Date of Submission: 11/10/2025 Date of Acceptance: 15/11/2025

www.ejournal.rems.co.in

Date of Publish: 28/11/2025

Comparative Study of Rate Limiting Algorithms in Cloud
Ram Naresh Lodhi, Dr. Bharat Singh Lodhi, Dr. Anil Pimpalapure, Dr. Prashant Sen
Research Scholar, Research Guide, Dean Computer Science, HoD Computer Science
Department of Computer Science Eklavya University

Abstract

This study performs a systematic, empirical
comparison of widely used rate-limiting algorithms
Token Bucket, Leaky Bucket, Fixed Window,
Sliding Window (counter/log) in the context of
Cloud APIs and gateway deployments. We measure
their behavior under realistic workloads: steady-
state traffic, bursty arrivals, multi-tenant contention,
and synthetic DDoS-like floods. Key evaluation
axes are accuracy (how closely enforced rate
matches configured limits), latency overhead,
memory & storage cost, fairness across
tenants/clients, and robustness under distributed
deployments (eventual vs. strong consistency). We
implement each algorithm in a modular testbed
using a programmable API gateway
(Envoy/NGINX as reference) and backing stores
(in-memory, Redis, and a distributed key-value
store). Experiments include single-node and geo-
distributed scenarios that emulate global APIs. We
also test consistency models: centralized counters
vs. approximate local counters with reconciliation.
Results will quantify trade-offs (e.g., sliding-
window accuracy vs. memory cost; token-bucket
burst allowance vs. peak load risk) and produce
practical guidelines for engineers choosing rate-
limiting strategies in cloud-native systems.
Deliverables include: open-source implementations,
benchmark suite, reproducible experiments, and
design recommendations for cloud API operators.
This work aims to bridge the gap between
theoretical algorithmic properties and real-world
operational constraints found in modern cloud
platforms.

1.0 Introduction

Cloud-based application programming interfaces
(APIs) have become the backbone of modern
distributed systems, supporting critical services in
e-commerce, social media, finance, healthcare, and
large-scale enterprise applications. As API traffic
grows in volume, variability, and unpredictability,
rate limiting has emerged as an essential mechanism
to prevent resource exhaustion, safeguard service
availability, mitigate malicious or accidental
overload, and ensure fair access among millions of
clients. A wide variety of rate limiting
algorithmssuch as fixed window, sliding-window
counter and log methods, token bucket, and leaky
bucketare used across cloud platforms, API
gateways, and service meshes, each offering distinct
trade-offs in accuracy, burst handling, memory
usage, latency overhead, and ease of distributed
deployment. Despite their pervasive adoption in
systems like NGINX, Envoy, Cloudflare, and AWS
API Gateway, comprehensive empirical
comparisons of these algorithms under identical
conditions remain limited, particularly in multi-
tenant and geo-distributed environments where
consistency, fairness, and scalability challenges are
prominent. The increasing complexity of cloud-
native architectures, characterized by microservices,
high cardinality workloads, and edge deployments,
demands a clearer understanding of how different
rate limiting strategies behave under varying traffic
patterns, backend storage models, and enforcement
points. Therefore, a systematic comparative study is
necessary to evaluate the performance, correctness,
and operational cost of these algorithms, thereby

IJSMER20251102

ISSN: 2455-6203

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 10 | Issue: 03 | Nov - 2025
Date of Submission: 11/10/2025 Date of Acceptance: 15/11/2025

www.ejournal.rems.co.in

Date of Publish: 28/11/2025

guiding cloud architects, developers, and system
designers in selecting the most suitable rate limiting
approach for their specific application and workload
requirements.

2.0 Literature Review

Rate limiting is a fundamental mechanism for
protecting APIs and cloud services from abuse,
controlling quality-of-service, and enforcing
fairness among clients. Modern cloud systems must
balance accuracy of enforcement, support for
bursts, memory/IO cost, latency overhead, and
scalability in geo-distributed environments. The
literature divides along two axes: (a) algorithmic
designs (token-bucket, leaky-bucket, fixed-window,
sliding-window variants), and (b) systems-level
strategies for making those algorithms scale
(centralized counters, distributed/approximate
counters, edge/local enforcement).

2. 2. Algorithmic families definitions and core
properties

o Fixed window: simplest approach; count
requests in discrete time windows. Low
memory but causes boundary effects
(burstiness near window borders).

« Sliding window (counter / log): keeps more
fine-grained time tracking (either via
counters with sub-windows or by storing
timestamps). More accurate smoothing of
requests but higher memory/10 (storing per-
request timestamps or many per-window
counters).

« Token bucket: allows tokens to accumulate
up to a bucket capacity (permits bursts),
implemented by decrementing tokens on
requests and refilling at a rate. Balances
burst allowance with long-term rate
enforcement.

e Leaky bucket: conceptual “queue” that
drains at a fixed rate similar smoothing
behavior, often implemented in proxies
(NGINX uses leaky-bucket style). Practical
guides and docs summarize pros/cons of
each approach. (Key takeaway): sliding-
window approaches are generally more
accurate (fewer false-positives/negatives) at
the cost of memory and storage ops;
token/leaky buckets give natural burst
handling but allow short-term overshoot.

2.3. Scalability & distributed enforcement

Single-node enforcement is simple, but cloud APIs
frequently require distributed enforcement for
availability and to avoid central bottlenecks.
Strategies in the literature and engineering blogs
include:

o Centralized counter (Redis / DB-backed):
simple to reason about, accurate, but
Redis/DB becomes a throughput/latency
bottleneck and single point of failure unless
sharded/clustered.

e Local (edge) enforcement + global
reconciliation: perform fast local checks
(reduce latency) and reconcile counts
asynchronously for eventual consistency.
This reduces load on central store but can
allow temporary inconsistencies or overage.
Envoy/Service-Mesh docs recommend local
rate limits to reduce load on global services.

e CRDT / eventually-consistent counters
and approximate data structures: CRDTs
(G-Counter/PN-Counter) and sketches
(Count-Min) are proposed to build
decentralized counters that converge without
coordination; these allow scale but introduce
approximation and delayed consistency

IJSMER20251102

ISSN:

2455-6203

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 10 | Issue: 03 | Nov - 2025
Date of Acceptance: 15/11/2025

Date of Submission: 11/10/2025

www.ejournal.rems.co.in

Date of Publish: 28/11/2025

guarantees. The foundational CRDT theory
is Shapiro et al. (2011).

Engineering case studies (Cloudflare) document
designs to run accurate rate limiting at the edge for
millions of domains by combining efficient data
structures, sharding and smart aggregation to
balance accuracy and throughput.

2.4. Approximate counting & sketches (memory-
efficient scaling)

When per-client state is huge, approximate
counting techniques (Count-Min Sketch and
variants) provide memory-time trade-offs: they
reduce state at the cost of bounded probabilistic
error. Pitel’s Count-Min-Log (and Count-Min
family) are directly applicable to rate counting in
high-cardinality workloads (many clients or many
keys). These approaches are used in practice when
exact per-key counters are infeasible.

2.5. Fairness, metrics and evaluation
methodology

Quantifying fairness and client-level equity is
necessary in multi-tenant contexts. Jain’s Fairness
Index is widely used to measure distributional
fairness across tenants and has been used in
networking/resource allocation evaluations (original

formulation and modern adaptations). For
comparison studies, common metrics include
enforcement accuracy (violation rate), latency

overhead (p95/p99), throughput, memory/storage
usage, and fairness (Jain index). Statistical testing
(confidence intervals, paired comparisons) is
recommended to support claims.

3.0 Comparative Analysis of Rate Limiting
Algorithms in Cloud APIs

Algorithm ([Advantages |Disadvantages ||[Remarks
. “Boundar
. - YUseful for
* Simple to||problem”: burst)
. . basic rate
implement |[at window||.. . . .
limiting in
. Low/||edges can .
. . .. |lpredictable
Fixed memory exceed limits
g traffic; not
Window |usage * Less accurate

» Efficient for]
low-traffic
APIs

for
workloads

irregular

e Poor fairness
under high load

ideal for|
cloud-scale
or bursty
workloads.

Sliding
Window
Counter

. More
accurate than
fixed window
. Smooths
traffic across
sub-windows
* Moderate
memory and
computationa
1 cost

. Still
approximate
(depends on
sub-window
granularity)

* Higher storage
operations than
fixed window|
. Delayed
accuracy for
extreme bursts

Good
trade-off
between
accuracy
and
resource
usage;
widely
used in API
gateways.

Sliding
Window
Log

. Highly!
accurate (per-
request
timestamp)

* Excellent
fairness

. Avoids
boundary
issues
entirely

* High memory
usage (stores
logs/timestamps
)
* Expensive 1/O
high
rates

under
request
* Less scalable
for millions of]
keys

Best
algorithm
for
accuracy
but often
too costly
for large-
scale cloud
APIs; used
in
specialized
systems.

Token
Bucket

. Allows
controlled
bursts

. Low

* Can exceed
long-term
briefly due to
burst allowance

rate

Ideal for
MmiCcroservic
es and
cloud APIs

IJSMER20251102

ISSN:

2455-6203

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 10 | Issue: 03 | Nov - 2025

Date of Submission: 11/10/2025

Date of Acceptance: 15/11/2025

www.ejournal.rems.co.in

Date of Publish: 28/11/2025

Algorithm ||Advantages |Disadvantages ||Remarks Algorithm ([Advantages |Disadvantages |[Remarks
CPU/memory|| Requires||needing ate millions of|errors tenant
overhead careful tuning||burst Counters |keys * Possible false|[systems
. Very|lof bucket size|[tolerance; (e.g., * Memory-|[positives/negati |\where
efficient forfjand refill rate ||widely Count-Min ||efficient ves exact
distributed/ed used in Sketch) * Suitable for||* Harder to||counters
ge production. extremely configure are too
enforcement high- costly.

* Used in cardinality
NGINX/Env APIs
oy

. Balance
. Smooth,||* Bursts are not||Suitable for between N Comp I
constant allowed (strict|[workloads accuracy & faplomenter
outflow rate{|smoothing) requiring Hybrid scalability n Race
. Strong||* Can introduce||stable Models » Fast local Jfidns and

Leaky control over|frequest request (Local +|decisions, o del

Bucket downstream (|queuing/latency |[flow; but Global eventual T - e
load e Can drop|less Sync) global) Requlres good
e Good|requests flexible for convergence conﬂlcjc
queue-like [laggressively bursty . Lower rescligy
behavior under load traffic. central load

* Single point of||Good for
. Strong||bottleneck/failu ||small-

Centralize ConSiSter.lCY . medium 4.0 Performance Evaluation of Rate-Limiting

d Counter . . Simple|l* High latency||scale; Algorithms

(Redis / logic : for global become.:s e

DB) . Highlyl||checks expensive Accuracy of|/Scalability in Workload
accurate * Not ideal for|land slow at Algorithm Rate Clo‘fd Handling
global limits {|geo-distributed ||global Enforcemen | Environment Efficiency

systems cloud scale. t s
. Very low . Eventuall|ldeal for High = High -
latency consistency —|{|CDNs and AHO"’VS High _|Handles

Distribute | temporary limit||\multi- precise Lishtweioht: bursty

d Locall Scales VIOIaHONS region Token control with d'g b B ratfic

Enforceme horizontally . Hard to||APIs; Bucket burst V:ZEI utzscross smoothly

nt (Edge) ;oa d Reduc;sl maintain accuracy is ha.nc.lling; clusters. without
central stores fairness across|traded for| m1n'1r.na1 false sudden

nodes scalability. positives. drops.

CRDT /|| High|[» Inherent|[Best for Leaky Moderate— |Moderate —|Moderate —

Approxim |scalability for||approximation |[large multi- High —||Can become|Smooths

IJSMER20251102 10

Volume: 10 | Issue: 03 | Nov - 2025

Date of Submission: 11/10/2025

Date of Acceptance: 15/11/2025

ISSN: 2455-6203
International Journal of Science Management & Engineering Research (IJSMER)

www.ejournal.rems.co.in

Date of Publish: 28/11/2025

Accuracy of||Scalability in Workload
. Rate Cloud)
Algorithm . Handling
Enforcemen ([Environment .
Efficiency
t S
Bucket /||across architectures. |millions of]
LUA distributed ops/sec.
Scripts) nodes.
High —
Very High — Very .lg
. Dynamicall
Predictive ||Moderate— adants to
Al-based or||accuracy High -+ .p
; . changing
Adaptive [[improves by|Depends on
. workload
Rate learning real-|compute .
. . and avoids
Limiting |time resources for . or
behaviour |[ML inference.
atterns Rder
o ’ throttling.

Accuracy of]|[Scalability in Workload
) Rate Cloud .
Algorithm . Handling
Enforcemen |[Environment .
Efficiency
t S
Bucket Enforces a||bottleneck iffjtraffic but
fixed output/implemented ||delays
rate reliably;||centrally. sudden
burst bursts; not|
elimination optimized
improves for dynamic
predictability workloads.
M —
Moderate — oderatg
Susceptible ey
u
A b(?un € High — Very|bursts at
Fixed oblak: v fast and|window
Window | ’ scalable due to|ledges
accuracy :
Counter simple degrade
reduces at . :
: counting. fairness
window
Al under heavy
9 load.
Moderate —
Very High —|Low— g
Excellent
N Most Moderate —
Sliding accuracy but
. accurate due|Stores large
Window slows down
to request-|[logs; becomes
Log . h under very
timestamp expensive at Ehh
tracking. 1 le.
racking arge scale e
High — High -
8% “IHigh — More|. B
Approximate Handles
‘e scalable than .
Sliding accuracy but dynamic
. .. log-based due
Window significantly workload
to small|| .
Counter better than with near-
memory :
fixed . real-time
) footprint. .
window. aggregation.
R High — Very High —
ate ' Very High | '™ 7’8
Limiting ||Atomic . Efficient
. . . Designed for .
Using Redis||operations multi-node under high
(Distribute ||ensure cloud concurrency
d Token||correctness ; supports

5.0 Industry Systems

In modern cloud platforms such as AWS, Google
Cloud, Azure, and API-driven SaaS infrastructures,
rate-limiting mechanisms are integral to ensuring
service reliability, fair resource allocation, and
protection against traffic surges. However,
implementing and maintaining these systems
involves significant operational costing influenced
by computational overhead, storage requirements,
distributed coordination, network latency, and
monitoring infrastructure. Simpler approaches like
fixed-window or token-bucket algorithms incur
minimal computational cost and are preferred in
high-throughput microservice architectures, where
efficiency directly translates to reduced server
utilization and lower billing. In contrast, advanced
modelssuch as sliding-window logs, distributed
Redis-based limiters, or machine-learning-driven
adaptive rate limitingintroduce higher resource
consumption due to their need for state replication,
timestamp management, and real-time analytics.

IJSMER20251102

11

ISSN: 2455-6203

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 10 | Issue: 03 | Nov - 2025
Date of Submission: 11/10/2025 Date of Acceptance: 15/11/2025

www.ejournal.rems.co.in

Date of Publish: 28/11/2025

Industry systems must also allocate budget for fault
tolerance, autoscaling, API gateway licensing (e.g.,
Kong, Apigee, AWS APl Gateway), and
observability tools that track rate-limit violations
and latency. As a result, operational costing
becomes a trade-off between performance accuracy,
scalability, and the economic constraints of cloud
deployment. Organizations increasingly balance
these factors by choosing hybrid
architecturescombining cost-efficient rate
enforcement with distributed cachingto maintain
both service quality and operational affordability.

6.0 Conclusion

Rate limiting has become a critical architectural
component in modern cloud-based systems,
ensuring reliability, fairness, and security in API-
driven environments. This comparative study
demonstrates that no single algorithm universally
outperforms others; instead, effectiveness depends
on workload patterns, performance priorities, and
the scalability needs of the organization. Token
Bucket and Sliding Window Counter algorithms
offer an optimal balance of accuracy and
operational efficiency, making them highly suitable
for large-scale cloud deployments. More precise
mechanisms, such as Sliding Window Log, provide
superior accuracy but with higher computational
and storage costs, limiting their practicality in high-
traffic environments. Distributed approaches using
systems like Redis further enhance scalability and
fault tolerance, aligning well with multi-region
cloud architectures. Meanwhile, emerging adaptive
and Al-based rate-limiting solutions show promise
in dynamically adjusting to unpredictable
workloads, though their deployment cost and
complexity remain concerns. Overall, cloud service
providers must choose rate-limiting strategies that
align with their traffic behavior, operational budget,
and latency constraints. Future innovations will

likely converge on hybrid, intelligent, and cost-
aware mechanisms that strengthen API resilience
while optimizing system resource consumption.

References

1. Bronzino, F., Stais, P., Kazdagli, A.,
Sadasivam, S., & Sivaraman, A. (2020).
Experiences with Distributed Rate Limiting in
Multi-Tenant Cloud Environments. Proceedings
of the ACM SIGCOMM Workshop on
Network Meets Al & ML.

2. Queuing System Algorithms (Token Bucket,
Leaky Bucket). (1994). IETF RFC 2697 A
Single Rate Three Color Marker. Internet
Engineering Task Force.

3. Blake, S., Black, D., Carlson, M., Davies, E.,
Wang, Z., & Weiss, W. (1998). An Architecture
for Differentiated Services. IETF RFC 2475.

4. Apcera Inc. (2015). Rate Limiting Strategies
and Techniques for Cloud Applications. Apcera
Technical Report.

5. Redislabs. (2019). Building Distributed Rate
Limiters with Redis. Redis Labs Engineering
Blog.

6. Gubbi, J., Buyya, R., Marusic, S., &
Palaniswami, M. (2013). Internet of Things
(1oT): A Vision, Architectural Elements, and
Future Directions. Future Generation
Computer Systems, 29(7), 1645-1660. (Useful
for API scaling behavior.)

7. Hou, D., Zhou, X., Zhang, Y., & Chen, G.
(2018). High-Performance APl Gateway:
Architecture, Performance Optimization, and
Rate Limiting. IEEE International Conference
on Cloud Computing Technology and Science
(CloudCom).

8. Amazon Web Services. (2023). APl Gateway
Quotas and Rate Limits. AWS Documentation.

IJSMER20251102

12

ISSN: 2455-6203

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 10 | Issue: 03 | Nov - 2025

www.ejournal.rems.co.in

Date of Submission: 11/10/2025 Date of Acceptance: 15/11/2025 Date of Publish: 28/11/2025

9. Google Cloud. (2023). Rate Limiting with
Google Cloud Endpoints. Google Cloud
Technical Docs.

10. Bremler-Barr, A., Harchol, Y., & Hay, D.
(2016). OpenFlow Congestion Control Using
Rate Limiting and Flow Aggregation. IEEE
Transactions on Network and Service
Management, 13(3), 470-483.

11. Kumar, V., & Hu, Q. (2021). Adaptive Rate
Limiting Using Machine Learning for Cloud-
native Microservices. |EEE International
Conference on High Performance Computing
& Communications (HPCC).

12. Kong Inc. (2022). Rate Limiting Plugin:
Algorithmic = Implementation. Kong API
Gateway Official Documentation.

13. Throttle Algorithms in Cloudflare. (2020).
Cloudflare Rate Limiting: Design, Algorithms,
and Best Practices. Cloudflare Engineering
Blog.

14. S. Sarkar and S. Ghosh, “CRDT-Based
Distributed Rate Limiter,” International
Journal of Scientific ~ Engineering and
Technology (IJSET), vol. 13, no. 3, pp. 348—
355, 2025.

15. N. Lyu, Y. Wang, Z. Cheng, Q. Zhang, and
F. Chen, “Multi-Objective Adaptive Rate
Limiting in Microservices Using Deep
Reinforcement Learning,” arXiv preprint
arXiv:2511.03279, 2025.

16. T. Kalyanasundaram, K. Panchalingam, T.
Jegatheesan, and A. Wijayasiri, “Load Balancer
Filter-Based Approach to Enable Distributed
API Rate Limiting,” in Proc. 37th FRUCT
Conf., Tampere, Finland, pp. 294-305, Apr.
2025.

17. Y. Li et al.,, “Adaptive Dynamic Defense
Strategy for Microservices Using Deep
Reinforcement Learning,” Electronics, vol. 14,
no. 20, p. 4096, Oct. 2025.

18. A. Barreto, A. Leitdo, and J. M. Lourengo,
“PS-CRDTs: CRDTs in Highly Volatile
Environments,” Future Generation Computer
Systems, vol. 142, pp. 79-94, Jan. 2023.

19. S. Vitenberg et al., “Optimizing CRDTs for
Low Memory Environments,” in Proc. 2025
ECOOP Conf., Oslo, Norway, 2025.

IJSMER20251102

13

