
ISSN: 2455-6203

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 10 | Issue: 03 | Nov - 2025 www.ejournal.rems.co.in

Date of Submission: 11/10/2025 Date of Acceptance: 15/11/2025 Date of Publish: 28/11/2025

IJSMER20251102 7

Comparative Study of Rate Limiting Algorithms in Cloud
Ram Naresh Lodhi , Dr. Bharat Singh Lodhi, Dr. Anil Pimpalapure, Dr. Prashant Sen

Research Scholar, Research Guide, Dean Computer Science, HoD Computer Science

Department of Computer Science Eklavya University

Abstract

This study performs a systematic, empirical

comparison of widely used rate-limiting algorithms

Token Bucket, Leaky Bucket, Fixed Window,

Sliding Window (counter/log) in the context of

Cloud APIs and gateway deployments. We measure

their behavior under realistic workloads: steady-

state traffic, bursty arrivals, multi-tenant contention,

and synthetic DDoS-like floods. Key evaluation

axes are accuracy (how closely enforced rate

matches configured limits), latency overhead,

memory & storage cost, fairness across

tenants/clients, and robustness under distributed

deployments (eventual vs. strong consistency). We

implement each algorithm in a modular testbed

using a programmable API gateway

(Envoy/NGINX as reference) and backing stores

(in-memory, Redis, and a distributed key-value

store). Experiments include single-node and geo-

distributed scenarios that emulate global APIs. We

also test consistency models: centralized counters

vs. approximate local counters with reconciliation.

Results will quantify trade-offs (e.g., sliding-

window accuracy vs. memory cost; token-bucket

burst allowance vs. peak load risk) and produce

practical guidelines for engineers choosing rate-

limiting strategies in cloud-native systems.

Deliverables include: open-source implementations,

benchmark suite, reproducible experiments, and

design recommendations for cloud API operators.

This work aims to bridge the gap between

theoretical algorithmic properties and real-world

operational constraints found in modern cloud

platforms.

1.0 Introduction

Cloud-based application programming interfaces

(APIs) have become the backbone of modern

distributed systems, supporting critical services in

e-commerce, social media, finance, healthcare, and

large-scale enterprise applications. As API traffic

grows in volume, variability, and unpredictability,

rate limiting has emerged as an essential mechanism

to prevent resource exhaustion, safeguard service

availability, mitigate malicious or accidental

overload, and ensure fair access among millions of

clients. A wide variety of rate limiting

algorithmssuch as fixed window, sliding-window

counter and log methods, token bucket, and leaky

bucketare used across cloud platforms, API

gateways, and service meshes, each offering distinct

trade-offs in accuracy, burst handling, memory

usage, latency overhead, and ease of distributed

deployment. Despite their pervasive adoption in

systems like NGINX, Envoy, Cloudflare, and AWS

API Gateway, comprehensive empirical

comparisons of these algorithms under identical

conditions remain limited, particularly in multi-

tenant and geo-distributed environments where

consistency, fairness, and scalability challenges are

prominent. The increasing complexity of cloud-

native architectures, characterized by microservices,

high cardinality workloads, and edge deployments,

demands a clearer understanding of how different

rate limiting strategies behave under varying traffic

patterns, backend storage models, and enforcement

points. Therefore, a systematic comparative study is

necessary to evaluate the performance, correctness,

and operational cost of these algorithms, thereby

ISSN: 2455-6203

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 10 | Issue: 03 | Nov - 2025 www.ejournal.rems.co.in

Date of Submission: 11/10/2025 Date of Acceptance: 15/11/2025 Date of Publish: 28/11/2025

IJSMER20251102 8

guiding cloud architects, developers, and system

designers in selecting the most suitable rate limiting

approach for their specific application and workload

requirements.

2.0 Literature Review

Rate limiting is a fundamental mechanism for

protecting APIs and cloud services from abuse,

controlling quality-of-service, and enforcing

fairness among clients. Modern cloud systems must

balance accuracy of enforcement, support for

bursts, memory/IO cost, latency overhead, and

scalability in geo-distributed environments. The

literature divides along two axes: (a) algorithmic

designs (token-bucket, leaky-bucket, fixed-window,

sliding-window variants), and (b) systems-level

strategies for making those algorithms scale

(centralized counters, distributed/approximate

counters, edge/local enforcement).

2. 2. Algorithmic families definitions and core

properties

 Fixed window: simplest approach; count

requests in discrete time windows. Low

memory but causes boundary effects

(burstiness near window borders).

 Sliding window (counter / log): keeps more

fine-grained time tracking (either via

counters with sub-windows or by storing

timestamps). More accurate smoothing of

requests but higher memory/IO (storing per-

request timestamps or many per-window

counters).

 Token bucket: allows tokens to accumulate

up to a bucket capacity (permits bursts),

implemented by decrementing tokens on

requests and refilling at a rate. Balances

burst allowance with long-term rate

enforcement.

 Leaky bucket: conceptual “queue” that

drains at a fixed rate similar smoothing

behavior, often implemented in proxies

(NGINX uses leaky-bucket style). Practical

guides and docs summarize pros/cons of

each approach. (Key takeaway): sliding-

window approaches are generally more

accurate (fewer false-positives/negatives) at

the cost of memory and storage ops;

token/leaky buckets give natural burst

handling but allow short-term overshoot.

2.3. Scalability & distributed enforcement

Single-node enforcement is simple, but cloud APIs

frequently require distributed enforcement for

availability and to avoid central bottlenecks.

Strategies in the literature and engineering blogs

include:

 Centralized counter (Redis / DB-backed):

simple to reason about, accurate, but

Redis/DB becomes a throughput/latency

bottleneck and single point of failure unless

sharded/clustered.

 Local (edge) enforcement + global

reconciliation: perform fast local checks

(reduce latency) and reconcile counts

asynchronously for eventual consistency.

This reduces load on central store but can

allow temporary inconsistencies or overage.

Envoy/Service-Mesh docs recommend local

rate limits to reduce load on global services.

 CRDT / eventually-consistent counters

and approximate data structures: CRDTs

(G-Counter/PN-Counter) and sketches

(Count-Min) are proposed to build

decentralized counters that converge without

coordination; these allow scale but introduce

approximation and delayed consistency

ISSN: 2455-6203

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 10 | Issue: 03 | Nov - 2025 www.ejournal.rems.co.in

Date of Submission: 11/10/2025 Date of Acceptance: 15/11/2025 Date of Publish: 28/11/2025

IJSMER20251102 9

guarantees. The foundational CRDT theory

is Shapiro et al. (2011).

Engineering case studies (Cloudflare) document

designs to run accurate rate limiting at the edge for

millions of domains by combining efficient data

structures, sharding and smart aggregation to

balance accuracy and throughput.

2.4. Approximate counting & sketches (memory-

efficient scaling)

When per-client state is huge, approximate

counting techniques (Count–Min Sketch and

variants) provide memory-time trade-offs: they

reduce state at the cost of bounded probabilistic

error. Pitel’s Count-Min-Log (and Count-Min

family) are directly applicable to rate counting in

high-cardinality workloads (many clients or many

keys). These approaches are used in practice when

exact per-key counters are infeasible.

2.5. Fairness, metrics and evaluation

methodology

Quantifying fairness and client-level equity is

necessary in multi-tenant contexts. Jain’s Fairness

Index is widely used to measure distributional

fairness across tenants and has been used in

networking/resource allocation evaluations (original

formulation and modern adaptations). For

comparison studies, common metrics include

enforcement accuracy (violation rate), latency

overhead (p95/p99), throughput, memory/storage

usage, and fairness (Jain index). Statistical testing

(confidence intervals, paired comparisons) is

recommended to support claims.

3.0 Comparative Analysis of Rate Limiting

Algorithms in Cloud APIs

Algorithm Advantages Disadvantages Remarks

Fixed

Window

• Simple to

implement

• Low

memory

usage

• Efficient for

low-traffic

APIs

• “Boundary

problem”: burst

at window

edges can

exceed limits

• Less accurate

for irregular

workloads

• Poor fairness

under high load

Useful for

basic rate

limiting in

predictable

traffic; not

ideal for

cloud-scale

or bursty

workloads.

Sliding

Window

Counter

• More

accurate than

fixed window

• Smooths

traffic across

sub-windows

• Moderate

memory and

computationa

l cost

• Still

approximate

(depends on

sub-window

granularity)

• Higher storage

operations than

fixed window

• Delayed

accuracy for

extreme bursts

Good

trade-off

between

accuracy

and

resource

usage;

widely

used in API

gateways.

Sliding

Window

Log

• Highly

accurate (per-

request

timestamp)

• Excellent

fairness

• Avoids

boundary

issues

entirely

• High memory

usage (stores

logs/timestamps

)

• Expensive I/O

under high

request rates

• Less scalable

for millions of

keys

Best

algorithm

for

accuracy

but often

too costly

for large-

scale cloud

APIs; used

in

specialized

systems.

Token

Bucket

• Allows

controlled

bursts

• Low

• Can exceed

long-term rate

briefly due to

burst allowance

Ideal for

microservic

es and

cloud APIs

ISSN: 2455-6203

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 10 | Issue: 03 | Nov - 2025 www.ejournal.rems.co.in

Date of Submission: 11/10/2025 Date of Acceptance: 15/11/2025 Date of Publish: 28/11/2025

IJSMER20251102 10

Algorithm Advantages Disadvantages Remarks

CPU/memory

overhead

• Very

efficient for

distributed/ed

ge

enforcement

• Used in

NGINX/Env

oy

• Requires

careful tuning

of bucket size

and refill rate

needing

burst

tolerance;

widely

used in

production.

Leaky

Bucket

• Smooth,

constant

outflow rate

• Strong

control over

downstream

load

• Good

queue-like

behavior

• Bursts are not

allowed (strict

smoothing)

• Can introduce

request

queuing/latency

• Can drop

requests

aggressively

under load

Suitable for

workloads

requiring

stable

request

flow; but

less

flexible for

bursty

traffic.

Centralize

d Counter

(Redis /

DB)

• Strong

consistency

• Simple

logic

• Highly

accurate

global limits

• Single point of

bottleneck/failu

re

• High latency

for global

checks

• Not ideal for

geo-distributed

systems

Good for

small-

medium

scale;

becomes

expensive

and slow at

global

cloud scale.

Distribute

d Local

Enforceme

nt (Edge)

• Very low

latency

• Scales

horizontally

• Reduces

load on

central stores

• Eventual

consistency →

temporary limit

violations

• Hard to

maintain

fairness across

nodes

Ideal for

CDNs and

multi-

region

APIs;

accuracy is

traded for

scalability.

CRDT /

Approxim

• High

scalability for

• Inherent

approximation

Best for

large multi-

Algorithm Advantages Disadvantages Remarks

ate

Counters

(e.g.,

Count-Min

Sketch)

millions of

keys

• Memory-

efficient

• Suitable for

extremely

high-

cardinality

APIs

errors

• Possible false

positives/negati

ves

• Harder to

configure

tenant

systems

where

exact

counters

are too

costly.

Hybrid

Models

(Local +

Global

Sync)

• Balance

between

accuracy &

scalability

• Fast local

decisions,

eventual

global

convergence

• Lower

central load

• Complexity in

implementation

• Race

conditions and

sync delays

• Requires good

conflict

resolution

4.0 Performance Evaluation of Rate-Limiting

Algorithms

Algorithm

Accuracy of

Rate

Enforcemen

t

Scalability in

Cloud

Environment

s

Workload

Handling

Efficiency

Token

Bucket

High –

Allows

precise

control with

burst

handling;

minimal false

positives.

High –

Lightweight;

distributes

well across

clusters.

High –

Handles

bursty

traffic

smoothly

without

sudden

drops.

Leaky
Moderate–

High –

Moderate –

Can become

Moderate –

Smooths

ISSN: 2455-6203

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 10 | Issue: 03 | Nov - 2025 www.ejournal.rems.co.in

Date of Submission: 11/10/2025 Date of Acceptance: 15/11/2025 Date of Publish: 28/11/2025

IJSMER20251102 11

Algorithm

Accuracy of

Rate

Enforcemen

t

Scalability in

Cloud

Environment

s

Workload

Handling

Efficiency

Bucket Enforces a

fixed output

rate reliably;

burst

elimination

improves

predictability

.

bottleneck if

implemented

centrally.

traffic but

delays

sudden

bursts; not

optimized

for dynamic

workloads.

Fixed

Window

Counter

Moderate –

Susceptible

to boundary

problem;

accuracy

reduces at

window

edges.

High – Very

fast and

scalable due to

simple

counting.

Moderate –

Sudden

bursts at

window

edges

degrade

fairness

under heavy

load.

Sliding

Window

Log

Very High –

Most

accurate due

to request-

timestamp

tracking.

Low–

Moderate –

Stores large

logs; becomes

expensive at

large scale.

Moderate –

Excellent

accuracy but

slows down

under very

high

workloads.

Sliding

Window

Counter

High –

Approximate

accuracy but

significantly

better than

fixed

window.

High – More

scalable than

log-based due

to small

memory

footprint.

High –

Handles

dynamic

workload

with near-

real-time

aggregation.

Rate

Limiting

Using Redis

(Distribute

d Token

High –

Atomic

operations

ensure

correctness

Very High –

Designed for

multi-node

cloud

Very High –

Efficient

under high

concurrency

; supports

Algorithm

Accuracy of

Rate

Enforcemen

t

Scalability in

Cloud

Environment

s

Workload

Handling

Efficiency

Bucket /

LUA

Scripts)

across

distributed

nodes.

architectures. millions of

ops/sec.

AI-based or

Adaptive

Rate

Limiting

Very High –

Predictive

accuracy

improves by

learning real-

time

behaviour

patterns.

Moderate–

High –

Depends on

compute

resources for

ML inference.

Very High –

Dynamicall

y adapts to

changing

workload

and avoids

over- or

under-

throttling.

5.0 Industry Systems

In modern cloud platforms such as AWS, Google

Cloud, Azure, and API-driven SaaS infrastructures,

rate-limiting mechanisms are integral to ensuring

service reliability, fair resource allocation, and

protection against traffic surges. However,

implementing and maintaining these systems

involves significant operational costing influenced

by computational overhead, storage requirements,

distributed coordination, network latency, and

monitoring infrastructure. Simpler approaches like

fixed-window or token-bucket algorithms incur

minimal computational cost and are preferred in

high-throughput microservice architectures, where

efficiency directly translates to reduced server

utilization and lower billing. In contrast, advanced

modelssuch as sliding-window logs, distributed

Redis-based limiters, or machine-learning-driven

adaptive rate limitingintroduce higher resource

consumption due to their need for state replication,

timestamp management, and real-time analytics.

ISSN: 2455-6203

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 10 | Issue: 03 | Nov - 2025 www.ejournal.rems.co.in

Date of Submission: 11/10/2025 Date of Acceptance: 15/11/2025 Date of Publish: 28/11/2025

IJSMER20251102 12

Industry systems must also allocate budget for fault

tolerance, autoscaling, API gateway licensing (e.g.,

Kong, Apigee, AWS API Gateway), and

observability tools that track rate-limit violations

and latency. As a result, operational costing

becomes a trade-off between performance accuracy,

scalability, and the economic constraints of cloud

deployment. Organizations increasingly balance

these factors by choosing hybrid

architecturescombining cost-efficient rate

enforcement with distributed cachingto maintain

both service quality and operational affordability.

6.0 Conclusion

Rate limiting has become a critical architectural

component in modern cloud-based systems,

ensuring reliability, fairness, and security in API-

driven environments. This comparative study

demonstrates that no single algorithm universally

outperforms others; instead, effectiveness depends

on workload patterns, performance priorities, and

the scalability needs of the organization. Token

Bucket and Sliding Window Counter algorithms

offer an optimal balance of accuracy and

operational efficiency, making them highly suitable

for large-scale cloud deployments. More precise

mechanisms, such as Sliding Window Log, provide

superior accuracy but with higher computational

and storage costs, limiting their practicality in high-

traffic environments. Distributed approaches using

systems like Redis further enhance scalability and

fault tolerance, aligning well with multi-region

cloud architectures. Meanwhile, emerging adaptive

and AI-based rate-limiting solutions show promise

in dynamically adjusting to unpredictable

workloads, though their deployment cost and

complexity remain concerns. Overall, cloud service

providers must choose rate-limiting strategies that

align with their traffic behavior, operational budget,

and latency constraints. Future innovations will

likely converge on hybrid, intelligent, and cost-

aware mechanisms that strengthen API resilience

while optimizing system resource consumption.

References

1. Bronzino, F., Stais, P., Kazdagli, A.,

Sadasivam, S., & Sivaraman, A. (2020).

Experiences with Distributed Rate Limiting in

Multi-Tenant Cloud Environments. Proceedings

of the ACM SIGCOMM Workshop on

Network Meets AI & ML.

2. Queuing System Algorithms (Token Bucket,

Leaky Bucket). (1994). IETF RFC 2697 A

Single Rate Three Color Marker. Internet

Engineering Task Force.

3. Blake, S., Black, D., Carlson, M., Davies, E.,

Wang, Z., & Weiss, W. (1998). An Architecture

for Differentiated Services. IETF RFC 2475.

4. Apcera Inc. (2015). Rate Limiting Strategies

and Techniques for Cloud Applications. Apcera

Technical Report.

5. Redislabs. (2019). Building Distributed Rate

Limiters with Redis. Redis Labs Engineering

Blog.

6. Gubbi, J., Buyya, R., Marusic, S., &

Palaniswami, M. (2013). Internet of Things

(IoT): A Vision, Architectural Elements, and

Future Directions. Future Generation

Computer Systems, 29(7), 1645–1660. (Useful

for API scaling behavior.)

7. Hou, D., Zhou, X., Zhang, Y., & Chen, G.

(2018). High-Performance API Gateway:

Architecture, Performance Optimization, and

Rate Limiting. IEEE International Conference

on Cloud Computing Technology and Science

(CloudCom).

8. Amazon Web Services. (2023). API Gateway

Quotas and Rate Limits. AWS Documentation.

ISSN: 2455-6203

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 10 | Issue: 03 | Nov - 2025 www.ejournal.rems.co.in

Date of Submission: 11/10/2025 Date of Acceptance: 15/11/2025 Date of Publish: 28/11/2025

IJSMER20251102 13

9. Google Cloud. (2023). Rate Limiting with

Google Cloud Endpoints. Google Cloud

Technical Docs.

10. Bremler-Barr, A., Harchol, Y., & Hay, D.

(2016). OpenFlow Congestion Control Using

Rate Limiting and Flow Aggregation. IEEE

Transactions on Network and Service

Management, 13(3), 470–483.

11. Kumar, V., & Hu, Q. (2021). Adaptive Rate

Limiting Using Machine Learning for Cloud-

native Microservices. IEEE International

Conference on High Performance Computing

& Communications (HPCC).

12. Kong Inc. (2022). Rate Limiting Plugin:

Algorithmic Implementation. Kong API

Gateway Official Documentation.

13. Throttle Algorithms in Cloudflare. (2020).

Cloudflare Rate Limiting: Design, Algorithms,

and Best Practices. Cloudflare Engineering

Blog.

14. S. Sarkar and S. Ghosh, “CRDT-Based

Distributed Rate Limiter,” International

Journal of Scientific Engineering and

Technology (IJSET), vol. 13, no. 3, pp. 348–

355, 2025.

15. N. Lyu, Y. Wang, Z. Cheng, Q. Zhang, and

F. Chen, “Multi-Objective Adaptive Rate

Limiting in Microservices Using Deep

Reinforcement Learning,” arXiv preprint

arXiv:2511.03279, 2025.

16. T. Kalyanasundaram, K. Panchalingam, T.

Jegatheesan, and A. Wijayasiri, “Load Balancer

Filter-Based Approach to Enable Distributed

API Rate Limiting,” in Proc. 37th FRUCT

Conf., Tampere, Finland, pp. 294–305, Apr.

2025.

17. Y. Li et al., “Adaptive Dynamic Defense

Strategy for Microservices Using Deep

Reinforcement Learning,” Electronics, vol. 14,

no. 20, p. 4096, Oct. 2025.

18. A. Barreto, A. Leitão, and J. M. Lourenço,

“PS-CRDTs: CRDTs in Highly Volatile

Environments,” Future Generation Computer

Systems, vol. 142, pp. 79–94, Jan. 2023.

19. S. Vitenberg et al., “Optimizing CRDTs for

Low Memory Environments,” in Proc. 2025

ECOOP Conf., Oslo, Norway, 2025.

