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Abstract  

This study performs a systematic, empirical 

comparison of widely used rate-limiting algorithms  

Token Bucket, Leaky Bucket, Fixed Window, 

Sliding Window (counter/log)  in the context of 

Cloud APIs and gateway deployments. We measure 

their behavior under realistic workloads: steady-

state traffic, bursty arrivals, multi-tenant contention, 

and synthetic DDoS-like floods. Key evaluation 

axes are accuracy (how closely enforced rate 

matches configured limits), latency overhead, 

memory & storage cost, fairness across 

tenants/clients, and robustness under distributed 

deployments (eventual vs. strong consistency). We 

implement each algorithm in a modular testbed 

using a programmable API gateway 

(Envoy/NGINX as reference) and backing stores 

(in-memory, Redis, and a distributed key-value 

store). Experiments include single-node and geo-

distributed scenarios that emulate global APIs. We 

also test consistency models: centralized counters 

vs. approximate local counters with reconciliation. 

Results will quantify trade-offs (e.g., sliding-

window accuracy vs. memory cost; token-bucket 

burst allowance vs. peak load risk) and produce 

practical guidelines for engineers choosing rate-

limiting strategies in cloud-native systems. 

Deliverables include: open-source implementations, 

benchmark suite, reproducible experiments, and 

design recommendations for cloud API operators. 

This work aims to bridge the gap between 

theoretical algorithmic properties and real-world 

operational constraints found in modern cloud 

platforms. 

 

1.0 Introduction 

Cloud-based application programming interfaces 

(APIs) have become the backbone of modern 

distributed systems, supporting critical services in 

e-commerce, social media, finance, healthcare, and 

large-scale enterprise applications. As API traffic 

grows in volume, variability, and unpredictability, 

rate limiting has emerged as an essential mechanism 

to prevent resource exhaustion, safeguard service 

availability, mitigate malicious or accidental 

overload, and ensure fair access among millions of 

clients. A wide variety of rate limiting 

algorithmssuch as fixed window, sliding-window 

counter and log methods, token bucket, and leaky 

bucketare used across cloud platforms, API 

gateways, and service meshes, each offering distinct 

trade-offs in accuracy, burst handling, memory 

usage, latency overhead, and ease of distributed 

deployment. Despite their pervasive adoption in 

systems like NGINX, Envoy, Cloudflare, and AWS 

API Gateway, comprehensive empirical 

comparisons of these algorithms under identical 

conditions remain limited, particularly in multi-

tenant and geo-distributed environments where 

consistency, fairness, and scalability challenges are 

prominent. The increasing complexity of cloud-

native architectures, characterized by microservices, 

high cardinality workloads, and edge deployments, 

demands a clearer understanding of how different 

rate limiting strategies behave under varying traffic 

patterns, backend storage models, and enforcement 

points. Therefore, a systematic comparative study is 

necessary to evaluate the performance, correctness, 

and operational cost of these algorithms, thereby 
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guiding cloud architects, developers, and system 

designers in selecting the most suitable rate limiting 

approach for their specific application and workload 

requirements. 

2.0 Literature Review  

Rate limiting is a fundamental mechanism for 

protecting APIs and cloud services from abuse, 

controlling quality-of-service, and enforcing 

fairness among clients. Modern cloud systems must 

balance accuracy of enforcement, support for 

bursts, memory/IO cost, latency overhead, and 

scalability in geo-distributed environments. The 

literature divides along two axes: (a) algorithmic 

designs (token-bucket, leaky-bucket, fixed-window, 

sliding-window variants), and (b) systems-level 

strategies for making those algorithms scale 

(centralized counters, distributed/approximate 

counters, edge/local enforcement).  

2. 2. Algorithmic families definitions and core 

properties 

 Fixed window: simplest approach; count 

requests in discrete time windows. Low 

memory but causes boundary effects 

(burstiness near window borders). 

 Sliding window (counter / log): keeps more 

fine-grained time tracking (either via 

counters with sub-windows or by storing 

timestamps). More accurate smoothing of 

requests but higher memory/IO (storing per-

request timestamps or many per-window 

counters). 

 Token bucket: allows tokens to accumulate 

up to a bucket capacity (permits bursts), 

implemented by decrementing tokens on 

requests and refilling at a rate. Balances 

burst allowance with long-term rate 

enforcement. 

 Leaky bucket: conceptual “queue” that 

drains at a fixed rate  similar smoothing 

behavior, often implemented in proxies 

(NGINX uses leaky-bucket style). Practical 

guides and docs summarize pros/cons of 

each approach. (Key takeaway): sliding-

window approaches are generally more 

accurate (fewer false-positives/negatives) at 

the cost of memory and storage ops; 

token/leaky buckets give natural burst 

handling but allow short-term overshoot. 

2.3. Scalability & distributed enforcement 

Single-node enforcement is simple, but cloud APIs 

frequently require distributed enforcement for 

availability and to avoid central bottlenecks. 

Strategies in the literature and engineering blogs 

include: 

 Centralized counter (Redis / DB-backed): 

simple to reason about, accurate, but 

Redis/DB becomes a throughput/latency 

bottleneck and single point of failure unless 

sharded/clustered. 

 Local (edge) enforcement + global 

reconciliation: perform fast local checks 

(reduce latency) and reconcile counts 

asynchronously for eventual consistency. 

This reduces load on central store but can 

allow temporary inconsistencies or overage. 

Envoy/Service-Mesh docs recommend local 

rate limits to reduce load on global services.  

 CRDT / eventually-consistent counters 

and approximate data structures: CRDTs 

(G-Counter/PN-Counter) and sketches 

(Count-Min) are proposed to build 

decentralized counters that converge without 

coordination; these allow scale but introduce 

approximation and delayed consistency 
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guarantees. The foundational CRDT theory 

is Shapiro et al. (2011).  

Engineering case studies (Cloudflare) document 

designs to run accurate rate limiting at the edge for 

millions of domains by combining efficient data 

structures, sharding and smart aggregation to 

balance accuracy and throughput.  

2.4. Approximate counting & sketches (memory-

efficient scaling) 

When per-client state is huge, approximate 

counting techniques (Count–Min Sketch and 

variants) provide memory-time trade-offs: they 

reduce state at the cost of bounded probabilistic 

error. Pitel’s Count-Min-Log (and Count-Min 

family) are directly applicable to rate counting in 

high-cardinality workloads (many clients or many 

keys). These approaches are used in practice when 

exact per-key counters are infeasible.  

2.5. Fairness, metrics and evaluation 

methodology 

Quantifying fairness and client-level equity is 

necessary in multi-tenant contexts. Jain’s Fairness 

Index is widely used to measure distributional 

fairness across tenants and has been used in 

networking/resource allocation evaluations (original 

formulation and modern adaptations). For 

comparison studies, common metrics include 

enforcement accuracy (violation rate), latency 

overhead (p95/p99), throughput, memory/storage 

usage, and fairness (Jain index). Statistical testing 

(confidence intervals, paired comparisons) is 

recommended to support claims.  

3.0 Comparative Analysis of Rate Limiting 

Algorithms in Cloud APIs 

Algorithm Advantages Disadvantages Remarks 

Fixed 

Window 

• Simple to 

implement 

• Low 

memory 

usage 

• Efficient for 

low-traffic 

APIs 

• “Boundary 

problem”: burst 

at window 

edges can 

exceed limits 

• Less accurate 

for irregular 

workloads 

• Poor fairness 

under high load 

Useful for 

basic rate 

limiting in 

predictable 

traffic; not 

ideal for 

cloud-scale 

or bursty 

workloads. 

Sliding 

Window 

Counter 

• More 

accurate than 

fixed window 

• Smooths 

traffic across 

sub-windows 

• Moderate 

memory and 

computationa

l cost 

• Still 

approximate 

(depends on 

sub-window 

granularity) 

• Higher storage 

operations than 

fixed window 

• Delayed 

accuracy for 

extreme bursts 

Good 

trade-off 

between 

accuracy 

and 

resource 

usage; 

widely 

used in API 

gateways. 

Sliding 

Window 

Log 

• Highly 

accurate (per-

request 

timestamp) 

• Excellent 

fairness 

• Avoids 

boundary 

issues 

entirely 

• High memory 

usage (stores 

logs/timestamps

) 

• Expensive I/O 

under high 

request rates 

• Less scalable 

for millions of 

keys 

Best 

algorithm 

for 

accuracy 

but often 

too costly 

for large-

scale cloud 

APIs; used 

in 

specialized 

systems. 

Token 

Bucket 

• Allows 

controlled 

bursts 

• Low 

• Can exceed 

long-term rate 

briefly due to 

burst allowance 

Ideal for 

microservic

es and 

cloud APIs 



ISSN: 2455-6203 

International Journal of Science Management & Engineering Research (IJSMER) 

Volume: 10 | Issue: 03 | Nov - 2025                       www.ejournal.rems.co.in 

Date of Submission: 11/10/2025     Date of Acceptance: 15/11/2025      Date of Publish: 28/11/2025 

  

IJSMER20251102                                                                                                                                10  

 

Algorithm Advantages Disadvantages Remarks 

CPU/memory 

overhead 

• Very 

efficient for 

distributed/ed

ge 

enforcement 

• Used in 

NGINX/Env

oy 

• Requires 

careful tuning 

of bucket size 

and refill rate 

needing 

burst 

tolerance; 

widely 

used in 

production. 

Leaky 

Bucket 

• Smooth, 

constant 

outflow rate 

• Strong 

control over 

downstream 

load 

• Good 

queue-like 

behavior 

• Bursts are not 

allowed (strict 

smoothing) 

• Can introduce 

request 

queuing/latency 

• Can drop 

requests 

aggressively 

under load 

Suitable for 

workloads 

requiring 

stable 

request 

flow; but 

less 

flexible for 

bursty 

traffic. 

Centralize

d Counter 

(Redis / 

DB) 

• Strong 

consistency 

• Simple 

logic 

• Highly 

accurate 

global limits 

• Single point of 

bottleneck/failu

re 

• High latency 

for global 

checks 

• Not ideal for 

geo-distributed 

systems 

Good for 

small-

medium 

scale; 

becomes 

expensive 

and slow at 

global 

cloud scale. 

Distribute

d Local 

Enforceme

nt (Edge) 

• Very low 

latency 

• Scales 

horizontally 

• Reduces 

load on 

central stores 

• Eventual 

consistency → 

temporary limit 

violations 

• Hard to 

maintain 

fairness across 

nodes 

Ideal for 

CDNs and 

multi-

region 

APIs; 

accuracy is 

traded for 

scalability. 

CRDT / 

Approxim

• High 

scalability for 

• Inherent 

approximation 

Best for 

large multi-

Algorithm Advantages Disadvantages Remarks 

ate 

Counters 

(e.g., 

Count-Min 

Sketch) 

millions of 

keys 

• Memory-

efficient 

• Suitable for 

extremely 

high-

cardinality 

APIs 

errors 

• Possible false 

positives/negati

ves 

• Harder to 

configure 

tenant 

systems 

where 

exact 

counters 

are too 

costly. 

Hybrid 

Models 

(Local + 

Global 

Sync) 

• Balance 

between 

accuracy & 

scalability 

• Fast local 

decisions, 

eventual 

global 

convergence 

• Lower 

central load 

• Complexity in 

implementation 

• Race 

conditions and 

sync delays 

• Requires good 

conflict 

resolution 

 

 

4.0 Performance Evaluation of Rate-Limiting 

Algorithms 

Algorithm 

Accuracy of 

Rate 

Enforcemen

t 

Scalability in 

Cloud 

Environment

s 

Workload 

Handling 

Efficiency 

Token 

Bucket 

High – 

Allows 

precise 

control with 

burst 

handling; 

minimal false 

positives. 

High – 

Lightweight; 

distributes 

well across 

clusters. 

High – 

Handles 

bursty 

traffic 

smoothly 

without 

sudden 

drops. 

Leaky 
Moderate–

High – 

Moderate – 

Can become 

Moderate – 

Smooths 
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Algorithm 

Accuracy of 

Rate 

Enforcemen

t 

Scalability in 

Cloud 

Environment

s 

Workload 

Handling 

Efficiency 

Bucket Enforces a 

fixed output 

rate reliably; 

burst 

elimination 

improves 

predictability

. 

bottleneck if 

implemented 

centrally. 

traffic but 

delays 

sudden 

bursts; not 

optimized 

for dynamic 

workloads. 

Fixed 

Window 

Counter 

Moderate – 

Susceptible 

to boundary 

problem; 

accuracy 

reduces at 

window 

edges. 

High – Very 

fast and 

scalable due to 

simple 

counting. 

Moderate – 

Sudden 

bursts at 

window 

edges 

degrade 

fairness 

under heavy 

load. 

Sliding 

Window 

Log 

Very High – 

Most 

accurate due 

to request-

timestamp 

tracking. 

Low–

Moderate – 

Stores large 

logs; becomes 

expensive at 

large scale. 

Moderate – 

Excellent 

accuracy but 

slows down 

under very 

high 

workloads. 

Sliding 

Window 

Counter 

High – 

Approximate 

accuracy but 

significantly 

better than 

fixed 

window. 

High – More 

scalable than 

log-based due 

to small 

memory 

footprint. 

High – 

Handles 

dynamic 

workload 

with near-

real-time 

aggregation. 

Rate 

Limiting 

Using Redis 

(Distribute

d Token 

High – 

Atomic 

operations 

ensure 

correctness 

Very High – 

Designed for 

multi-node 

cloud 

Very High – 

Efficient 

under high 

concurrency

; supports 

Algorithm 

Accuracy of 

Rate 

Enforcemen

t 

Scalability in 

Cloud 

Environment

s 

Workload 

Handling 

Efficiency 

Bucket / 

LUA 

Scripts) 

across 

distributed 

nodes. 

architectures. millions of 

ops/sec. 

AI-based or 

Adaptive 

Rate 

Limiting 

Very High – 

Predictive 

accuracy 

improves by 

learning real-

time 

behaviour 

patterns. 

Moderate–

High – 

Depends on 

compute 

resources for 

ML inference. 

Very High – 

Dynamicall

y adapts to 

changing 

workload 

and avoids 

over- or 

under-

throttling. 

 

5.0 Industry Systems  

In modern cloud platforms such as AWS, Google 

Cloud, Azure, and API-driven SaaS infrastructures, 

rate-limiting mechanisms are integral to ensuring 

service reliability, fair resource allocation, and 

protection against traffic surges. However, 

implementing and maintaining these systems 

involves significant operational costing influenced 

by computational overhead, storage requirements, 

distributed coordination, network latency, and 

monitoring infrastructure. Simpler approaches like 

fixed-window or token-bucket algorithms incur 

minimal computational cost and are preferred in 

high-throughput microservice architectures, where 

efficiency directly translates to reduced server 

utilization and lower billing. In contrast, advanced 

modelssuch as sliding-window logs, distributed 

Redis-based limiters, or machine-learning-driven 

adaptive rate limitingintroduce higher resource 

consumption due to their need for state replication, 

timestamp management, and real-time analytics. 
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Industry systems must also allocate budget for fault 

tolerance, autoscaling, API gateway licensing (e.g., 

Kong, Apigee, AWS API Gateway), and 

observability tools that track rate-limit violations 

and latency. As a result, operational costing 

becomes a trade-off between performance accuracy, 

scalability, and the economic constraints of cloud 

deployment. Organizations increasingly balance 

these factors by choosing hybrid 

architecturescombining cost-efficient rate 

enforcement with distributed cachingto maintain 

both service quality and operational affordability. 

6.0 Conclusion 

Rate limiting has become a critical architectural 

component in modern cloud-based systems, 

ensuring reliability, fairness, and security in API-

driven environments. This comparative study 

demonstrates that no single algorithm universally 

outperforms others; instead, effectiveness depends 

on workload patterns, performance priorities, and 

the scalability needs of the organization. Token 

Bucket and Sliding Window Counter algorithms 

offer an optimal balance of accuracy and 

operational efficiency, making them highly suitable 

for large-scale cloud deployments. More precise 

mechanisms, such as Sliding Window Log, provide 

superior accuracy but with higher computational 

and storage costs, limiting their practicality in high-

traffic environments. Distributed approaches using 

systems like Redis further enhance scalability and 

fault tolerance, aligning well with multi-region 

cloud architectures. Meanwhile, emerging adaptive 

and AI-based rate-limiting solutions show promise 

in dynamically adjusting to unpredictable 

workloads, though their deployment cost and 

complexity remain concerns. Overall, cloud service 

providers must choose rate-limiting strategies that 

align with their traffic behavior, operational budget, 

and latency constraints. Future innovations will 

likely converge on hybrid, intelligent, and cost-

aware mechanisms that strengthen API resilience 

while optimizing system resource consumption. 
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