International Journal of Science Management & Engineering Research (IJSMER)

Volume: 09 | Issue: 03 | Nov- 2024 <u>www.ejournal.rems.co.in</u>

Date of Submission: 25/10/2024 Date of Acceptance: 12/11/2024 Date of Publish: 25/11/2024

Analytical study on Inventory Models for Deteriorating Products

Sona Singh Chawda¹, Dr. Gopi Sao², Sapna Tamrakar³

(1)\$(3)* Research scholar Eklavya University Damoh,

Associate Professor Dept. of Mathematics, Eklavya University Damoh. (MP)

gopisao0104@gmail.com

Abstract

This paper explores inventory models that deal with deteriorating products, a key concern in industries where goods degrade over time, such as food, pharmaceuticals, and perishable goods. Unlike traditional inventory models that assume products do not deteriorate or expire, models for deteriorating products must account for the reduction in the usable stock over time. This paper investigates various inventory models, including economic order quantity (EOQ) models, that incorporate product deterioration, the impact of deterioration rates, and external factors such as demand patterns and replenishment strategies. By reviewing classical modern models and advancements, the paper aims to provide a comprehensive understanding of how to optimize inventory management for deteriorating products.

Keywords-Deteriorating products, inventory management, economic order quantity (EOQ), inventory control, perishable goods, deterioration rate, stock management.

1. Introduction

Inventory management is crucial for the success of many businesses. Traditional inventory models, such as the Economic Order Quantity (EOQ), assume that the products in inventory do not deteriorate or perish over time. However, in industries such as food, medicine, and chemicals, this assumption is unrealistic. Deteriorating products face a reduction in value as they age, which presents unique challenges for managing stock levels effectively.

The main objective of inventory management for deteriorating products is to minimize the total cost, which includes ordering costs, holding costs, and the costs related to product deterioration. Understanding the effects of product shelf life, deterioration rates, and demand patterns is essential for devising optimal inventory management strategies. This paper explores various models designed specifically deteriorating products, addressing the need for a more sophisticated approach to inventory control.

2. Literature Review

Classical inventory models, such as the EOQ model developed by Harris (1913), assume that products do not deteriorate. These models focus on balancing ordering costs and holding costs to minimize total inventory costs. However,

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 09 | Issue: 03 | Nov- 2024 <u>www.ejournal.rems.co.in</u>

Date of Submission: 25/10/2024 Date of Acceptance: 12/11/2024 Date of Publish: 25/11/2024

for deteriorating products, such models fail to consider the depreciation of product value over time, necessitating the development of specialized models.

The inclusion of deterioration in inventory models can be traced back to the work of Goyal (1972), who extended the EOQ model to account for products that deteriorate. Since then, numerous studies have proposed various extensions and modifications to the classical inventory models.

Goyal's Model (1972) The earliest model that addressed the deterioration of products by incorporating a deterioration rate in the inventory cost structure. It assumed that the rate of deterioration is constant over time., Sarker and Ha (2005) Extended the EOQ model for deteriorating products with varying demand. They also considered the possibility of backordering and the introduction of lost sales.

Several studies have recognized that deterioration rates are not always constant. The deterioration of some products may increase with time, temperature, or other factors. For example Models with Time-Varying Deterioration Rates, food products generally deteriorate more rapidly as they approach their expiry date, Chung and Liao (2005) Proposed models where deterioration rates depend on time, capturing the effect of changing environmental conditions on product life, Wu and Ouyang (2013) Examined models

with time-dependent deterioration rates and the impact of promotional pricing strategies.

Inventory models for deteriorating products also need to account for various demand patterns, such as deterministic or stochastic demand. While traditional EOQ models assume a constant demand, the real world often experiences fluctuating or uncertain demand, which further complicates inventory management deteriorating products. Bakker and Stenger (1997): Investigated inventory models deterministic and stochastic demand, where the deterioration rate was incorporated into the model, and the demand followed a normal or Poisson distribution.Giri and Haldar (2006) Considered where the demand inventory systems deterministic and follows a linear trend, with a deterioration rate that is proportional to the inventory level.

In some industries, products may pass through multiple stages of inventory, such as wholesale, retail, or consumption stages. Multiechelon inventory models for deteriorating products consider the different stages of the product's lifecycle.Lee and Kim (2004)Developed a multi-echelon inventory model for deteriorating products with stock transfer between different levels of distribution.Govindan et al. Proposed a multi-echelon model with (2014)time-dependent demand that is both and influenced by product deterioration.

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 09 | Issue: 03 | Nov- 2024 <u>www.ejournal.rems.co.in</u>

Date of Submission: 25/10/2024 Date of Acceptance: 12/11/2024 Date of Publish: 25/11/2024

3. Types of Inventory Models for Deteriorating Products

3.1 Economic Order Quantity (EOQ) for Deteriorating Products

The traditional EOQ model, which seeks to minimize total inventory costs by balancing the ordering and holding costs, can be modified for deteriorating products. The basic EOQ model assumes a constant demand and constant deterioration rate. The total cost function can be expressed as:

$$TC = \frac{D}{O}S + \frac{Q}{2}H + \frac{D}{O}P$$
1

Where:

- D is the demand rate,
- Q is the order quantity,
- S is the setup cost per order,
- H is the holding cost per unit,
- P is the deterioration cost.

3.2 Partial Backordering Models

In situations where the demand exceeds the available stock, customers may accept partial delivery or backordering. Backordering models are essential for deteriorating products since lost sales might not be a viable option, and firms prefer to fulfill backorders as soon as stock is replenished.

3.3 Stochastic Inventory Models-

Stochastic inventory models are crucial for managing inventory in scenarios where

demand or other factors (like deterioration rates) are uncertain or random. Unlike deterministic models, which assume that demand, lead times, and deterioration rates are known with certainty, stochastic models recognize the inherent variability and unpredictability in real-world systems. These models allow businesses to account for uncertainty and develop strategies to minimize the risk of stockouts, overstocking, and the associated costs.

In the context of deteriorating products, stochastic inventory models are particularly useful because they incorporate both random demand and uncertain deterioration rates, which can vary due to environmental factors or market conditions. Below is an overview of the key components, application areas, and examples of stochastic inventory models for deteriorating products.

Key Components of Stochastic Inventory Models

A. Stochastic Demand:

In a stochastic inventory model, demand is not fixed and follows a probability distribution (such as normal, Poisson, or exponential). This randomness introduces variability into the inventory management process, making it difficult to predict exactly how much stock will be required at any given time.

For deteriorating products, demand is often time-varying, with different periods

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 09 | Issue: 03 | Nov- 2024 <u>www.ejournal.rems.co.in</u>

Date of Submission: 25/10/2024 Date of Acceptance: 12/11/2024 Date of Publish: 25/11/2024

showing higher or lower demand due to seasonality, promotional events, or other external factors.

B. Random Lead Time:

Lead time—the time between placing an order and receiving the stock—may also be uncertain. Variability in lead time can have significant effects on inventory levels, especially for deteriorating products, which may lose value over the waiting period.

Stochastic models account for the variability in lead time and help determine optimal ordering policies to mitigate the risk of stockouts.

C. Deterioration Rate:

Deterioration is often modeled as a timedependent or probabilistic function. For example, the rate of deterioration may be constant over time, or it might increase as the product ages or depending on the storage conditions.

In stochastic models, the deterioration process may also be random, potentially based on environmental conditions (e.g., temperature, humidity) or operational factors (e.g., handling errors, transportation delays).

D. Stock Level Control:

Stochastic inventory models typically aim to control inventory levels in a way that minimizes costs, including holding costs, ordering costs, and the cost of stockouts (or shortage costs). For deteriorating products, the control system must consider both the potential for stockouts due to uncertain demand and the risk of stock decay due to deterioration over time.

Key Types of Stochastic Inventory Models 1. (Q, r) Model (Continuous Review System)

In a continuous review system, inventory levels are constantly monitored, and a replenishment order is placed when the stock level falls below a predefined reorder point \((r\)). The order quantity (Q) is constant, and the time between orders is variable.

Application to Deteriorating Products:

In the case of deteriorating products, the reorder point (r) must consider both the expected demand during the lead time and the expected deterioration. The inventory model will need to account for the possibility that some stock will become unusable before it is sold or used, thereby influencing the optimal reorder point. For stochastic demand, the reorder point must be adjusted based on the variability of the demand during the replenishment lead time.

Formula:

The reorder point (r) can be adjusted for deteriorating products as follows:

$$r = \mu \; L + Z_{\alpha \; \sigma \; L} + DI \qquad \qquad(2). \label{eq:reconstruction}$$

where:

μ L is the expected demand during the lead time,

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 09 | Issue: 03 | Nov- 2024 <u>www.ejournal.rems.co.in</u>

Date of Submission: 25/10/2024 Date of Acceptance: 12/11/2024 Date of Publish: 25/11/2024

 Z_{α} is the critical value for the desired service level.

 $_{\sigma}$ L is the standard deviation of demand during lead time,

DI is Deterioration Impact accounts for the amount of product expected to deteriorate during the lead time.

2. Newsvendor Model

The Newsvendor model is a fundamental approach used to optimize inventory for products with random demand over a single period (such as seasonal products, or products with limited shelf lives). This model is particularly suitable for situations where demand is uncertain and products have a single opportunity to sell before they either deteriorate or become obsolete.

Application to Deteriorating Products:

The Newsvendor model can be adapted to handle deteriorating products by considering the trade-off between ordering too much (which could lead to wastage or deterioration) and ordering too little (which risks stockouts and lost sales).

The critical ratio for the Newsvendor model with deteriorating products is given by:

Critical Ratio =
$$\frac{\text{Co}}{\text{Co} + \text{Cu}}$$
(3)

where:

C_o is the cost of understocking (i.e., the opportunity cost of lost sales),

C_u is the cost of overstocking (i.e., the cost of holding deteriorating or obsolete inventory).

In this model, the inventory manager must balance the risk of holding too much stock that could deteriorate with the risk of not having enough stock to meet demand. The goal is to find the optimal order quantity that minimizes the expected cost

3. (s, S) Model (Periodic Review System)

The (s, S) model involves periodic reviews where the inventory level is checked at regular intervals, and a replenishment order is placed if the inventory level falls below a certain threshold (s). The order quantity is then adjusted to raise the inventory level to a target (S). This model is particularly useful when demand and supply are both random and the replenishment policy is reviewed periodically.

Application to Deteriorating Products:

In the case of deteriorating products, the inventory level (S) may need to be adjusted to account for the fact that some of the stock might no longer be saleable due to deterioration. As a result, the inventory review and ordering decisions must factor in the potential for deterioration between reviews.

The reorder quantity

Q = S - s would need to account for both the expected demand during the review period and the expected amount of deterioration.

4. Monte Carlo Simulation Models

Monte Carlo simulations are powerful tools used to model complex systems where multiple uncertain variables (such as demand, lead

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 09 | Issue: 03 | Nov- 2024 <u>www.ejournal.rems.co.in</u>

Date of Submission: 25/10/2024 Date of Acceptance: 12/11/2024 Date of Publish: 25/11/2024

time, and deterioration rates) interact. In stochastic inventory models for deteriorating products, Monte Carlo simulations can simulate various demand scenarios, storage conditions, and deterioration processes, allowing inventory managers to evaluate the performance of different inventory policies under uncertainty.

Application to Deteriorating Products:

Monte Carlo simulations can generate multiple scenarios based on random inputs for demand, deterioration rates, and replenishment times. By running these simulations, businesses can estimate the probability of stockouts, overstocking, or product deterioration under different inventory strategies.

This technique is especially useful when the deterioration process is complex and difficult to model analytically, or when the product's shelf life is highly uncertain.

Benefits of Stochastic Inventory Models for **Deteriorating Products**

1. Risk Mitigation:

Stochastic models help businesses manage the uncertainty in demand and deterioration rates by providing a structured way to account for variability. This reduces the risks of stockouts, overstocking, and waste.

2. Cost Optimization:

By incorporating uncertainty in demand and deterioration, stochastic models enable businesses to optimize their ordering quantities and reorder points, minimizing costs associated with ordering, holding, and deterioration.

3. Improved Decision Making:

These models provide more realistic and robust decision-making frameworks for businesses dealing with deteriorating products, especially when demand is volatile and the rate of deterioration is uncertain.

Case Example: Perishable Pharmaceuticals

Consider a pharmaceutical company that manufactures medicines with a limited shelf life. The company faces uncertain demand and must account for the deterioration of products over time. Using a stochastic inventory model, the company can adjust its ordering policies to account for the randomness in demand (using a Poisson or normal distribution), the variability in lead time, and the impact of product expiration.

The model helps the company determine the optimal reorder point and order quantity by balancing the costs of understocking (which could lead to stockouts and lost sales) with the costs of overstocking (which could lead to expired products and waste).

3.4 Multi-Product Inventory Models

In industries dealing with various types of deteriorating products, multi-product inventory models are crucial. These models take into account the differing deterioration rates and demand patterns of each product.

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 09 | Issue: 03 | Nov- 2024 <u>www.ejournal.rems.co.in</u>

Date of Submission: 25/10/2024 Date of Acceptance: 12/11/2024 Date of Publish: 25/11/2024

4. Factors Affecting Inventory Models for Deteriorating Products

Several key factors influence inventory models for deteriorating products:

4.1 Deterioration Rate

The rate at which products deteriorate is a central factor in these models. The deterioration rate can be constant or time-varying, depending on the product and environmental conditions.

4.2 Demand Pattern

Demand can be deterministic or stochastic. Stochastic demand models are more complex, but they offer a better approximation of real-world conditions, especially in industries with uncertain customer needs.

4.3 Holding Cost

Holding costs for deteriorating products often differ from those for non-deteriorating products, as they must account for the potential loss in value due to deterioration.

4.4 Replenishment Strategy

Replenishment strategies vary across industries and can involve ordering in batches or continuous review systems. The timing of orders affects stock levels, product life, and total inventory costs.

5. Case Studies and Applications

5.1 Pharmaceutical Industry

The pharmaceutical industry deals with perishable products with expiration dates. Managing the inventory of medicines, vaccines, and other healthcare products requires precise models to minimize wastage and ensure availability.

5.2 Food Industry

In the food industry, spoilage is a significant concern. Products such as dairy, meat, and fruits have limited shelf lives, and inventory management must take into account factors like spoilage rates, demand fluctuations, and seasonal variations.

5.3 Electronics and Chemical Products -

Inventory management for electronics chemical products presents unique challenges due to the gradual deterioration of product quality over time, even if they do not have explicit expiration dates like perishable goods. While these products may not perish in the traditional sense, they can suffer from issues such as obsolescence, degradation in performance, or loss of functionality due to environmental conditions or long-term storage. Therefore, inventory models for these industries must address factors like shelf life, deterioration rates, demand fluctuations, and technology evolution. The following case studies highlight how inventory models are applied in the electronics and chemical sectors.

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 09 | Issue: 03 | Nov- 2024 <u>www.ejournal.rems.co.in</u>

2.

Technology

Date of Submission: 25/10/2024 Date of Acceptance: 12/11/2024 Date of Publish: 25/11/2024

5.3.1 Inventory Management in the Electronics Industry

The electronics industry involves products such as semiconductors, mobile phones, consumer electronics, and computer hardware, all of which can suffer from quality degradation due to factors environmental and like aging, exposure, technological obsolescence. These typically do not deteriorate in the sense that food or pharmaceuticals do, but their value declines over time due to obsolescence, technological advancements, and changing consumer preferences.

Challenges:

Obsolescence: Rapid technological advancement in electronics can lead to a product becoming obsolete even before it has been sold.

Degradation of Components: Some electronic components, such as batteries or capacitors, may degrade over time, reducing their functionality even if the product remains unused.

Demand Fluctuations: Electronics often have seasonal demand or experience spikes in demand due to market trends, promotions, or new product releases.

Storage Conditions: Products need to be stored under specific conditions to prevent degradation, such as exposure to humidity or temperature fluctuations.

Application of Inventory Models:

1. Time-Varying Deterioration Models

Inventory models for electronics often incorporate time-dependent deterioration rates, especially for components like batteries and displays that degrade over time. For example, the shelf life of smartphone batteries is a critical consideration for electronics manufacturers and retailers. By using models that incorporate time-varying deterioration, businesses adjust their inventory practices to prevent the sale of products with degraded components or low functionality.

Electronics companies often use models that account for technological obsolescence, where products lose value over time due to the release of newer models. These models help companies make decisions about how long to keep obsolete models in stock and when to phase them out to make space for newer versions. These models use

depreciation functions based on technological

advancements or product life cycles.

Obsolescence

Models:

3. Multi-Echelon Inventory Management: In large electronics supply chains, inventory is often held across multiple stages, including manufacturing, wholesaling, and retailing. Multi-echelon inventory models consider the inventory levels at each stage and the transfer of goods between locations. These models help optimize the entire supply chain, reducing costs and

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 09 | Issue: 03 | Nov- 2024 <u>www.ejournal.rems.co.in</u>

Date of Submission: 25/10/2024 Date of Acceptance: 12/11/2024 Date of Publish: 25/11/2024

preventing stockouts or overstock situations that can lead to either obsolescence or inadequate product availability.

Case Study Example:

A well-known consumer electronics company uses an inventory model that considers both the time-dependent degradation of batteries and the risk of obsolescence in their smartphones. The company uses an advanced forecasting model to predict when older models are likely to become obsolete and thus stop ordering or manufacturing They also utilize them. a time-varying deterioration model to ensure that any batterypowered devices in their inventory are still functional and safe for sale. This strategy helps them minimize the risk of customer complaints and product returns while maintaining competitive edge by only selling the latest models.

5.3.2 Inventory Management in the Chemical Industry

The chemical industry, particularly in the production of chemicals and raw materials, faces challenges similar to those found in the electronics industry but with additional complexities due to the hazardous or reactive nature of many chemical products. While not always subject to the same kind of technological obsolescence, chemicals can deteriorate due to factors like temperature, humidity, exposure to light, and reactions with other substances.

Challenges:

Shelf Life: Many chemicals, such as pharmaceuticals, paints, or industrial solvents, have limited shelf lives. Once the product exceeds its shelf life, its chemical properties may change, rendering it ineffective or unsafe to use.

Environmental Sensitivity: Some chemicals degrade when exposed to environmental factors, such as oxygen, moisture, or heat. This is especially critical in the storage and transportation of chemicals.

Regulations and Safety Concerns: The chemical industry is heavily regulated, and inventory management must consider these regulations, especially when handling dangerous substances.

Demand Variability: Demand for chemicals may be highly volatile, influenced by market trends, regulatory changes, or seasonal fluctuations in the production or consumption of certain chemicals.

Application of Inventory Models:

1. Shelf-Life Models for Perishable Chemicals:

Chemicals that degrade over time, such as pharmaceutical products or perishable industrial chemicals, require inventory models that account for their expiration dates. These models typically involve time-based deterioration functions and help companies plan their ordering cycles to ensure that chemicals are used within their shelf lives. For instance, pharmaceutical companies often use models that calculate optimal reorder

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 09 | Issue: 03 | Nov- 2024 <u>www.ejournal.rems.co.in</u>

Date of Submission: 25/10/2024 Date of Acceptance: 12/11/2024 Date of Publish: 25/11/2024

points and order quantities to minimize the holding costs of products that will soon expire.

2. Temperature-Dependent Deterioration

Models: For chemicals sensitive to environmental conditions, models often include temperature-dependent deterioration rates. These models ensure that inventory is stored under ideal conditions to slow down the degradation process and extend the product's shelf life. Temperature-sensitive chemicals such as certain paints, adhesives, and food additives are prime candidates for these types of models.

3. **Demand Forecasting** and **Inventory Optimization:** The chemical industry often uses advanced forecasting techniques to predict demand and optimize inventory. These techniques include machine learning algorithms that can predict future demand based on historical data, market trends, and other external factors. Chemical companies use this information to ensure that they have the right quantities of chemicals on hand at any given time, minimizing the risk of overstocking and deterioration while avoiding stockouts.

Case Study Example:

A global chemical company that manufactures industrial adhesives uses a time-dependent deterioration model to manage its inventory of raw materials. The company produces adhesives

that degrade over time, especially if exposed to moisture or high temperatures. By applying a deterioration model that incorporates both the passage of time and environmental exposure, the company can calculate the optimal time to order new raw materials, ensuring that stock does not degrade before it is used in production. Additionally, the company has implemented real-time monitoring of warehouse conditions (temperature and humidity) to ensure that products are stored optimally, reducing the risk of premature deterioration.

5.3.3 Combined Challenges in Electronics and Chemicals

In industries like electronics and chemicals, inventory models for deteriorating products must address both obsolescence and the gradual degradation of the product's quality. One of the most significant challenges in these industries is balancing the need to minimize inventory costs while ensuring that products do not deteriorate before they can be sold or used. This requires sophisticated forecasting, demand modeling, and deterioration control mechanisms.

Integrated Models:

Some companies adopt integrated inventory management systems that combine multiple factors—such as product obsolescence, degradation, and demand variability—into a single framework. These models use advanced

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 09 | Issue: 03 | Nov- 2024 <u>www.ejournal.rems.co.in</u>

Date of Submission: 25/10/2024 Date of Acceptance: 12/11/2024 Date of Publish: 25/11/2024

analytics to provide real-time visibility into stock levels, forecast demand, and adjust orders accordingly, ensuring optimal product availability and minimizing losses due to deterioration or obsolescence.

Case Study Example:

An electronics company that manufactures both consumer gadgets and batteries for other industries uses an integrated inventory model that accounts for both the deterioration of battery life and the risk of obsolescence in their electronic products. The company uses a multi-variable forecasting model that predicts when product components are likely to become obsolete or degrade, adjusting the supply chain accordingly to minimize excess stock and reduce storage costs.

Electronics and certain chemical products may deteriorate or degrade over time, even if they do not have an explicit expiration date. Models for managing such products often incorporate wear-and-tear rates.

6. Conclusion

Inventory management for deteriorating products is a complex challenge that requires the development of specialized models. These models must take into account the deterioration rates, demand patterns, and replenishment strategies to minimize inventory costs. Research in this field is still evolving, and businesses must adopt dynamic approaches to meet the challenges posed by deteriorating products.

Stochastic inventory models are invaluable tools for managing deteriorating products, particularly in environments uncertain demand, random lead times, and variable deterioration rates. By incorporating randomness into the inventory management process, these models allow businesses to make more informed decisions that minimize costs and reduce the risks associated with stockouts, overstocking, and product waste. For deteriorating products, stochastic models can be applied to handle uncertainty in demand the and deterioration. These models often use probabilistic demand patterns and incorporate randomness in the deterioration rate.

Both the electronics and chemical industries face unique challenges in inventory management due to the deterioration of product quality over time. While electronic products may suffer from obsolescence and degradation of key components like batteries, chemical products face issues related to shelf life, temperature sensitivity, environmental exposure. By applying specialized inventory models—such as timedependent deterioration models, obsolescence forecasting, and multi-echelon inventory management—companies in these industries can optimize their inventory practices and minimize the negative effects of product degradation, leading to reduced costs and improved customer satisfaction.

International Journal of Science Management & Engineering Research (IJSMER)

Volume: 09 | Issue: 03 | Nov- 2024 <u>www.ejournal.rems.co.in</u>

Date of Submission: 25/10/2024 Date of Acceptance: 12/11/2024 Date of Publish: 25/11/2024

Future research could explore the integration of artificial intelligence and machine learning techniques to predict demand, optimize inventory, and adjust replenishment strategies in real time. Furthermore, sustainability practices, such as reducing waste in perishable goods, may become a more prominent concern in future inventory management research.

7. References

- 1. Goyal, S.K. (1972). "Economic Order Quantity under Conditions of Deterioration." *Operational Research Quarterly*, 23(2), 123-128.
- 2. Sarker, B. and Ha, S. (2005). "Inventory Models for Deteriorating Items with Demand Dependent on Stock Level." *European Journal of Operational Research*, 160(3), 753-763.
- 3. Chung, K.J. and Liao, T.C. (2005). "Optimal Order Quantity Model for Deteriorating Items with Time Dependent Deterioration Rates." *Computers and Industrial Engineering*, 48(1), 53-65.
- 4. Wu, H. and Ouyang, L. (2013). "Inventory Control for Deteriorating Products under Time Varying Demand." *Mathematics and Computers in Simulation*, 92, 68-77.
- 5. Bakker, E., and Stenger, A. (1997). "Stochastic Models in Inventory Management." *Naval Research Logistics*, 44(3), 311-327.
- 6. Ding, S. (2018) Integration on corporate inventory under continuous demand. *J. Interdiscip. Math.* 21, 917–928.
- 7. Brown, R.G. (1967) *Decision Rules for Inventory Management*; FAO: Rome, Italy,

- 8. Raafat, F. (1991) Survey of literature on continuously deteriorating inventory models. *J. Oper. Res. Soc.*, 42, 27–37.
- 9. Hollier, R.; Mak, K. Inventory replenishment policies for deteriorating items in a declining market. *Int. J. Prod. Res.*, *21*, 813–836.
- 10. Mandal, B.A.; Phaujdar, S. (1989) An inventory model for deteriorating items and stock-dependent consumption rate. *J. Oper. Res. Soc.*,
- 11. Misra, R.B. (1975) Optimum production lot size model for a system with deteriorating inventory. *Int. J. Prod. Res.*, 13, 495–505.
- 12. Sandhu, B.S.(2019) A study on inventory of deteriorating things having price reliant demand, time reliant holding cost. *J. Gujarat Res. Soc.*, 21, 522–528.

Me amais