
                                                                                                                            ISSN: 2455-6203 

International Journal of Science Management & Engineering Research (IJSMER) 
Volume: 08 Issue: 02 | July - 2023                    www.ejournal.rems.co.in 

 

IJSMER202308                                                                                                                                                                                1141 

 
 

Mittag-Leffler Function Associated with Integral Transform 

Theorems 
Dr. Gopi Sao

(1)
 , Dr. H. R. Suryavanshi,

(2) 
Dr. Kamlesh Kumar

(3)
, 

 Department of Mathematics
 

Ekalavya University, Damoh (MP) India 

Vishwavidyalaya Engg. College Ambikapur (Chhattisgarh)
(2) 

 

Abstract: 
This research paper explores the properties and 

applications of the Mittag-Leffler function in the 

context of integral transform theorems. The Mittag-

Leffler function, denoted as Eα,β(z), is a 

generalization of the exponential function with 

complex parameters α and β. It has gained 

significant attention due to its numerous applications 

in various fields, including fractional calculus, 

probability theory, mathematical physics, and 

engineering. This paper focuses on the relationship 

between the Mittag-Leffler function and integral 

transforms, such as the Laplace, Fourier, and Mellin 

transforms. We investigate the integral transform 

theorems associated with the Mittag-Leffler function 

and their applications in solving differential and 

integral equations. The paper also presents 

numerical techniques and algorithms for computing 

the Mittag-Leffler function and provides examples 

illustrating its practical use. 

 

1. Introduction 
 

1.1 Overview of Integral Transforms and their 

Significance: 

Integral transforms are mathematical operations that 

convert a function from one domain to another. 

They play a crucial role in various branches of 

mathematics and applied sciences, enabling the 

transformation of problems from one domain to 

another where they may be easier to solve. Integral 

transforms are powerful tools for solving differential 

equations, integral equations, and other 

mathematical problems. 

Some well-known integral transforms include the 

Laplace transform, Fourier transform, Mellin 

transform, and Hankel transform. These transforms 

have applications in fields such as signal processing, 

control systems, image processing, quantum 

mechanics, and many more. They provide a 

systematic way to analyze functions and their 

behavior, allowing for efficient problem-solving 

techniques. 

 

1.2 Introduction to the Mittag-Leffler Function 

and its Properties: 

The Mittag-Leffler function, denoted as Eα,β(z), is a 

generalization of the exponential function. It was 

introduced by Gösta Mittag-Leffler in the late 19th 

century and has since gained significant attention 

due to its unique properties and wide-ranging 

applications. 

The Mittag-Leffler function is defined as a series or 

integral representation, depending on the values of 

its parameters α and β. It is an entire function of 

complex order, exhibiting interesting behavior for 

various parameter values. The function has a rich set 

of properties, including analyticity, monotonically 

increasing or decreasing behavior, and asymptotic 

properties. 

 

The Mittag-Leffler function is closely related to 

fractional calculus, which deals with derivatives and 

integrals of non-integer order. It appears as a 

fundamental solution to fractional differential 

equations, providing a natural extension of classical 

exponential functions. 

 

1.3 Motivation for Studying the Mittag-Leffler 

Function in the Context of Integral Transforms: 

The study of the Mittag-Leffler function in the 

context of integral transforms is motivated by 

several factors: 
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a) Generalization of Classical Integral 

Transforms: The Mittag-Leffler function 

generalizes classical integral transforms by 

incorporating fractional calculus concepts. By 

introducing fractional order parameters in the 

integral transforms, the Mittag-Leffler function 

offers a more flexible and powerful framework for 

solving complex mathematical problems. 

 

b) Solving Differential and Integral Equations: 

The Mittag-Leffler function has proven to be a 

valuable tool for solving differential and integral 

equations involving fractional derivatives. By 

incorporating the Mittag-Leffler function into 

integral transform theorems, we can obtain new 

solution techniques for fractional differential 

equations, providing insights into the behavior of 

complex systems. 

 

c) Applications in Science and Engineering: Many 

real-world phenomena exhibit non-local and 

memory-dependent behavior, which can be 

effectively described using fractional calculus. By 

utilizing the Mittag-Leffler function within integral 

transforms, we can model and analyze these 

complex systems more accurately. This has 

applications in various fields such as physics, 

biology, finance, and engineering. 

 

d) Computational Aspects: Efficient numerical 

algorithms and approximation techniques for 

computing the Mittag-Leffler function are essential 

for practical applications. Exploring the relationship 

between the Mittag-Leffler function and integral 

transforms enables the development of numerical 

methods for solving fractional calculus problems, 

contributing to the advancement of computational 

tools in this domain. 

                By studying the Mittag-Leffler function in 

the context of integral transforms, we can enhance 

our understanding of fractional calculus, develop 

new solution techniques, and provide valuable 

insights into the behavior of complex systems. This 

research aims to explore the properties and 

applications of the Mittag-Leffler function within 

integral transform theorems, paving the way for 

advancements in various scientific and engineering 

fields. 

 

2. Preliminaries 

 

2.1 Definition and Basic Properties of the Mittag-

Leffler Function: 

The Mittag-Leffler function, denoted as Eα,β(z), is 

defined as a function of complex variable z with two 

complex parameters α and β. It is given by the 

following series representation: 

          
  

       

 

   
                                

………..  (1) 

 

where Γ(.) denotes the gamma function. The 

parameters α and β can take any complex values, 

although certain conditions may be required for 

convergence. 

 

The Mittag-Leffler function exhibits several 

important properties: 

 

Analyticity: The Mittag-Leffler function is an entire 

function, meaning it is analytic over the entire 

complex plane. 

 

Monotonicity: For fixed values of α and β, the 

function Eα,β(z) is either monotonically increasing 

or monotonically decreasing, depending on the 

values of α and β. 

 

Special Cases: When α = β = 1, the Mittag-Leffler 

function reduces to the exponential function exp(z). 

Asymptotic Behavior: The Mittag-Leffler function 

exhibits various asymptotic properties, such as 

exponential growth or decay for specific parameter 

ranges. 

 

2.1 Relationship between the Mittag-Leffler 

Function and Other Special Functions: 

The Mittag-Leffler function is closely related to 

other special functions and mathematical concepts. 

Some notable relationships include: 
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Exponential Function: When α = β = 1, the Mittag-

Leffler function reduces to the exponential function 

exp(z). Thus, the exponential function can be 

considered a special case of the Mittag-Leffler 

function. 

 

Gamma Function: The gamma function, denoted as 

Γ(z), appears in the denominator of the series 

representation of the Mittag-Leffler function. This 

connection allows for connections between the 

Mittag-Leffler function and other functions 

involving the gamma function, such as the Wright 

function and Fox's H-function. 

 

Wright Function: The Wright function, denoted as 

ψ(z), is a generalization of the exponential function. 

It can be expressed in terms of the Mittag-Leffler 

function as 

Ψ (z) = E1, 1(z).                       ……….(2) 

 

Fox's H-Function: The Fox's H-function is a 

generalization of many special functions, including 

the Mittag-Leffler function. It provides a unified 

framework for representing a wide range of special 

functions and has connections to fractional calculus. 

 

2.3 Fractional Calculus and its Connection to the 

Mittag-Leffler Function: 

Fractional calculus deals with derivatives and 

integrals of non-integer order. It provides a natural 

extension of classical calculus and has applications 

in various fields where memory-dependent or non-

local phenomena are present. 

 

The Mittag-Leffler function plays a fundamental 

role in fractional calculus. It appears as a solution to 

fractional differential equations involving fractional 

derivatives or integrals. The fractional derivative of 

a function f(x) of order α is defined using the 

Mittag-Leffler function as: 

 

Dαf(x) =                            
 

 

t)   )dt      ……….(3) 
 

where Γ(.) denotes the gamma function and f'(τ) 

represents the derivative of f(x) with respect to τ. 

The Mittag-Leffler function arises naturally in the 

representation of the fractional derivative. 

Furthermore, the Mittag-Leffler function is used in 

fractional integral transforms, such as the Laplace, 

Fourier, and Mellin transforms, to solve fractional 

differential equations and integral equations. These 

transforms involve the Mittag-Leffler function as a 

kernel or as part of the solution representation. 

 

The connection between the Mittag-Leffler function 

and fractional calculus 

 

3. Integral Transform Theorems 

 

3.1 Laplace Transform Theorems Involving the 

Mittag-Leffler Function: 

The Laplace transform is an integral transform that 

converts a function of time into a function of 

complex frequency. The Mittag-Leffler function 

appears in various Laplace transform theorems, 

allowing for the solution of fractional differential 

equations. 

 

a) Laplace Transform of the Mittag-Leffler 

Function: 

The Laplace transform of the Mittag-Leffler 

function Eα,β(t) with respect to time t is given by: 

 

L{Eα,β(t)} =(            ………..(4) 

 
where L{.} denotes the Laplace transform and s is 

the complex frequency parameter. 

 

b) Laplace Transform Theorem for Fractional 

Derivatives: 

The Laplace transform theorem for fractional 

derivatives states that for a function f(t) satisfying a 

fractional differential equation of the form: 

 

Dαf(t) = g(t),               ……….(5) 
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where Dα represents the fractional derivative of 

order α, and g(t) is a given function, the Laplace 

transform of the solution f(t) is given by: 

 

L{f(t)} = G(s) /   ,         ………(6) 
 

 where G(s) is the Laplace transform of the function 

g(t). 

 

3.2 Fourier Transform Theorems Associated with 

the Mittag-Leffler Function: 

The Fourier transform is an integral transform that 

converts a function of time into a function of 

frequency. The Mittag-Leffler function appears in 

certain Fourier transform theorems, providing 

solutions to fractional partial differential equations. 

 

a) Fourier Transform of the Mittag-Leffler 

Function: 

The Fourier transform of the Mittag-Leffler function 

Eα,β(t) with respect to time t is given by: 

 

F{Eα,β(t)} = Γ(α) /        , …….(7) 

 

where F{.} denotes the Fourier transform, ω is the 

frequency parameter, and j represents the imaginary 

unit. 

 

b) Fourier Transform Theorem for Fractional 

Partial Differential Equations: 

The Fourier transform theorem for fractional partial 

differential equations states that for a function u(x, t) 

satisfying a fractional partial differential equation of 

the form: 

 

∂αu(x, t) / ∂tα = ∂βu(x, t) / ∂xβ,  …..(8) 
 

where ∂α/∂tα and ∂β/∂xβ represent fractional 

derivatives of order α and β with respect to time t 

and space x, respectively, the Fourier transform of 

the solution u(x, t) is given by: 

 

F{u(x, t)} = U(x, ω),          ……….(9) 
 

where U(x, ω) is the Fourier transform of the 

function u(x, t) with respect to both variables. 

 

3.3 Mellin Transform Theorems Incorporating 

the Mittag-Leffler Function: 

The Mellin transform is an integral transform that 

converts a function into a function of a complex 

parameter. The Mellin transform theorems involving 

the Mittag-Leffler function are useful in solving 

fractional integral equations. 

 

a) Mellin Transform of the Mittag-Leffler 

Function: 

The Mellin transform of the Mittag-Leffler function 

Eα,β(t) with respect to time t is given by: 

 

M{Eα,β(t)} = Γ(β) / (  ),     ……(10) 
 

where M{.} denotes the Mellin transform and p is 

the Kernel as a complex parameter. 

 

b) Mellin Transform Theorem for Fractional 

Integral Equations: 

The Mellin transform theorem for fractional integral 

equations states that for a function f(t) satisfying a 

fractional integral equation of the form: 

               
 

 
 = g(t)         …….(11) 

 
where K(t, τ) represents the kernel function and g(t) 

is a given function, the Mellin transform of the 

solution f(t) is given by: 
 

M{f(t)} = G(p) / H(p),         ………(12) 
 

where G(p) and H(p) are the Mellin transforms of 

the functions g(t) and K(t, τ), respectively. 

 

These integral transform theorems involving the 

Mittag-Leffler function provide valuable tools for 

solving fractional differential equations, partial 

differential equations, and integral equations. They 

allow for the transformation of problems from the 

time or space domain to the frequency or parameter 
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domain, facilitating the analysis and solution of 

complex mathematical problems. 

 

4. Applications of Mittag-Leffler Function in 

Integral Transforms 

 

4.1 Solving Ordinary and Fractional Differential 

Equations Using Integral Transforms: 

The Mittag-Leffler function plays a crucial role in 

solving ordinary and fractional differential equations 

by incorporating integral transforms. The integral 

transform techniques involving the Mittag-Leffler 

function provide efficient and powerful methods for 

obtaining solutions. 

 

a) Ordinary Differential Equations: By applying 

integral transforms such as the Laplace or Fourier 

transform to ordinary differential equations, the 

equations can be transformed into algebraic 

equations involving the transformed function. The 

Mittag-Leffler function appears as a solution to 

these algebraic equations, allowing for the retrieval 

of the original solution through inverse transforms. 

 

b) Fractional Differential Equations: Fractional 

differential equations involve derivatives of non-

integer order. The Mittag-Leffler function naturally 

arises as a solution to fractional differential 

equations. By applying integral transforms like the 

Laplace or Fourier transform to these equations, the 

fractional derivatives are converted into algebraic 

equations involving the transformed function. The 

Mittag-Leffler function is often encountered as a key 

component in the solutions obtained through inverse 

transforms. 

 

4.2 Integral Equations Involving the Mittag-

Leffler Function and Their Solutions: 

Integral equations, which involve functions as 

unknowns within integral expressions, can also be 

solved using integral transforms incorporating the 

Mittag-Leffler function. The Mittag-Leffler function 

appears as a kernel in these integral equations, 

leading to their solutions. 

 

Integral equations involving the Mittag-Leffler 

function arise in various contexts, such as in the 

study of fractional integral equations or Volterra 

integral equations. By applying integral transforms 

such as the Mellin or Laplace transform to these 

equations, the unknown function is transformed into 

a simpler form. The Mittag-Leffler function often 

emerges in the solutions obtained through inverse 

transforms. 

4.3 Fractional Calculus Applications Using the 

Mittag-Leffler Function and Integral 

Transforms: 

Fractional calculus, which deals with derivatives and 

integrals of non-integer order, finds numerous 

applications in various scientific and engineering 

fields. The Mittag-Leffler function, being closely 

related to fractional calculus, plays a significant role 

in these applications when combined with integral 

transforms. 

 

a) Fractional Differential Equations: Fractional 

differential equations describe systems with 

memory-dependent or non-local behavior. The 

Mittag-Leffler function is a fundamental solution to 

fractional differential equations, allowing for the 

modeling and analysis of such systems. Integral 

transforms incorporating the Mittag-Leffler function 

provide powerful tools for solving and 

understanding these equations. 

 

b) Fractional Integral Equations: Fractional 

integral equations involve integrals of non-integer 

order and are prevalent in mathematical physics, 

signal processing, and image reconstruction. The 

Mittag-Leffler function appears as a solution to 

these equations, and integral transforms 

incorporating the Mittag-Leffler function enable the 

solution of fractional integral equations. 

 

The applications of the Mittag-Leffler function in 

integral transforms extend to a wide range of 

scientific and engineering domains. By utilizing the 

properties and relationships of the Mittag-Leffler 

function within integral transforms, solutions to 

differential equations, integral equations, and 
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problems involving fractional calculus can be 

obtained efficiently and accurately. 

 

5.  Numerical Methods for Computing Mittag-

Leffler Function 

Numerical computation of the Mittag-Leffler 

function is essential when analytical expressions or 

closed-form representations are not available or 

computationally expensive. Various approximation 

techniques and algorithms have been developed to 

efficiently and accurately compute the Mittag-

Leffler function. 

 

5.1 Approximation Techniques for Evaluating 

the Mittag-Leffler Function: 

 

a) Power Series Approximation: The Mittag-

Leffler function can be approximated using 

truncated power series expansions. By choosing an 

appropriate number of terms, the power series 

approximation can provide good accuracy for a 

certain range of parameters and argument values. 

 

b) Continued Fraction Approximation: The 

Mittag-Leffler function can be represented as a 

continued fraction, allowing for an iterative 

approximation process. By truncating the continued 

fraction at a suitable point, an accurate 

approximation of the Mittag-Leffler function can be 

obtained. 

 

c) Padé Approximation: Padé approximants are 

rational functions that approximate the Mittag-

Leffler function by matching its power series 

expansion. Padé approximations provide efficient 

and accurate representations, particularly for specific 

parameter values. 

 

d) Interpolation Methods: Interpolation 

techniques, such as polynomial interpolation or 

spline interpolation, can be employed to 

approximate the Mittag-Leffler function by 

evaluating it at a set of chosen points. The accuracy 

of the approximation depends on the density and 

distribution of the interpolation points. 

5.2 Algorithms for Numerical Computation of the 

Mittag-Leffler Function: 

 

a) Numerical Integration: The Mittag-Leffler 

function can be computed numerically by integrating 

its defining series representation using numerical 

integration methods. Techniques like numerical 

quadrature or Gaussian quadrature can be applied to 

approximate the integral. 

 

b) Numerical Summation: The Mittag-Leffler 

function can be expressed as an infinite series. 

Numerical summation algorithms, such as 

accelerated convergence methods (e.g., Euler 

summation, Richardson extrapolation) or series 

transformations (e.g., Levin's u-transformation, 

Shanks transformation), can be used to efficiently 

compute the series and improve convergence. 

 

c) Numerical Inversion of Integral Transforms: 

Integral transforms, such as the Laplace or Fourier 

transform, can be employed to compute the Mittag-

Leffler function. Numerical inversion techniques, 

such as numerical integration or numerical 

integration-contour methods, can be utilized to 

invert the transform and obtain the Mittag-Leffler 

function. 

 

6. Comparison of Different Numerical 

Methods and Their Accuracy: 
The accuracy of the numerical methods for 

computing the Mittag-Leffler function depends on 

several factors, including the range of parameters 

and argument values, the desired precision, and 

computational resources. It is important to compare 

the different numerical methods to determine their 

suitability for specific applications. 

Comparisons can be made based on criteria such as: 

 

Accuracy: The closeness of the computed values to 

the true values of the Mittag-Leffler function. 

 

Convergence: The speed at which the numerical 

methods converge to the accurate solution. 
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Computational Efficiency: The computational cost 

and time required for the numerical computation. 

 

Range of Applicability: The parameter and 

argument ranges for which the numerical methods 

are effective. 

 

To compare different numerical methods, one can 

evaluate their performance on a set of benchmark 

problems with known analytical solutions or 

compare the results against highly accurate 

numerical references. Additionally, analyzing the 

numerical stability and robustness of the methods 

under various conditions is crucial. 

 

Overall, the choice of numerical method for 

computing the Mittag-Leffler function depends on 

the specific requirements of the problem, including 

the desired accuracy, computational resources, and 

the parameter and argument values involved. 

 

6.1 Application of the Mittag-Leffler Function in 

Solving Real-World Problems: 

 

a) Fractional Diffusion Equations: The Mittag-

Leffler function is widely used in modeling and 

solving fractional diffusion equations, which 

describe anomalous diffusion processes. These 

equations find applications in various fields, such as 

physics, biology, and finance. By utilizing integral 

transform theorems involving the Mittag-Leffler 

function, solutions to fractional diffusion equations 

can be obtained, allowing for the analysis and 

prediction of real-world diffusion phenomena. 

 

b)Fractional Viscoelasticity: Viscoelastic materials 

exhibit time-dependent behavior that can be 

modeled using fractional calculus. The Mittag-

Leffler function appears in the solutions to fractional 

viscoelastic models, enabling the characterization 

and understanding of the mechanical response of 

materials in engineering applications, such as 

polymer science and material science. 

 

6.2 Case Studies Highlighting the Practicality and 

Effectiveness of the Mittag-Leffler Function in 

Integral Transforms: 

 

a) Financial Mathematics: The Mittag-Leffler 

function has been applied in the field of finance to 

model and analyze complex stochastic processes. 

For instance, in option pricing models incorporating 

fractional calculus, the use of integral transforms 

involving the Mittag-Leffler function allows for the 

pricing and valuation of financial derivatives in 

markets with memory effects and non-Gaussian 

behavior. 

 

b) Biomedical Engineering: Fractional calculus and 

the Mittag-Leffler function have found applications 

in biomedical engineering, particularly in the 

modeling and analysis of physiological systems with 

memory properties. By utilizing integral transforms 

and the Mittag-Leffler function, solutions to 

fractional differential equations arising in 

biomedical contexts can be obtained, leading to 

insights into the behavior of biological systems. 

 

These examples and case studies demonstrate the 

practicality and effectiveness of the Mittag-Leffler 

function in integral transform theorems. By 

employing the Mittag-Leffler function in integral 

transforms, real-world problems in diverse fields can 

be effectively addressed, leading to enhanced 

understanding, prediction, and optimization of 

complex phenomena. 

 

7. Conclusion 
In conclusion, the Mittag-Leffler function plays a 

vital role in integral transforms, particularly in 

solving ordinary and fractional differential 

equations, integral equations, and problems 

involving fractional calculus. Through the use of 

integral transform theorems, the Mittag-Leffler 

function allows for the transformation of problems 

from the time or space domain to the frequency or 

parameter domain, facilitating their analysis and 

solution. 
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The research paper has provided an overview of the 

Mittag-Leffler function and its properties, as well as 

its connections to other special functions and 

fractional calculus. It has discussed various integral 

transform theorems involving the Mittag-Leffler 

function, such as Laplace, Fourier, and Mellin 

transform theorems, and their applications in solving 

differential equations and integral equations. 

 

Additionally, the paper has examined numerical 

methods for computing the Mittag-Leffler function, 

including approximation techniques and algorithms, 

and highlighted the importance of comparing 

different numerical methods in terms of accuracy, 

convergence, and computational efficiency. 

 

Moving forward, there are several promising 

research directions and potential advancements in 

the field of Mittag-Leffler function and integral 

transforms. Some areas of exploration include: 

Refining and developing more accurate 

approximation techniques and numerical algorithms 

for computing the Mittag-Leffler function, 

considering different parameter regimes and ranges 

of arguments. 

 

Investigating the stability and convergence 

properties of the numerical methods, especially in 

cases where the parameters or arguments are 

complex or involve high dimensions.Extending the 

application of the Mittag-Leffler function in integral 

transforms to emerging areas of research, such as 

fractional optimal control, fractional signal 

processing, and fractional image analysis. 

 

Exploring the connections between the Mittag-

Leffler function and other mathematical disciplines, 

such as probability theory, stochastic processes, and 

fractional calculus, to enhance our understanding 

and utilization of the function in integral transforms. 

 

In conclusion, the Mittag-Leffler function is a 

powerful mathematical tool in integral transforms, 

enabling the solution of differential equations, 

integral equations, and problems involving 

fractional calculus. Its properties and relationships 

with other special functions make it a versatile and 

valuable tool in various scientific and engineering 

fields. Further advancements in numerical methods 

and the exploration of new applications will 

continue to enhance our ability to utilize the Mittag-

Leffler function effectively in solving complex real-

world problems. 
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